
Distributed object models for collaboration in the

construction industry

Jos P. van Leeuwen*, Aant van der Zee

Design Systems Group, Department of Architecture, Building, and Planning, Eindhoven University of Technology, The Netherlands

Abstract

Information about products for the construction industry is increasingly often provided to designers in digital ways that

enable them to apply the information directly in the design process. Digital product catalogues are provided using various media

and formats and several initiatives are taken by the industry and by CAD developers to integrate this kind of information into

CAD systems. Generally, current practice is to distribute the information to designers, for example, by using CD-ROMs or a

website where the information can be downloaded. In our research, we recognise that distributing information in this manner

detaches it from the business processes in the construction supply chain, which is a major disadvantage.

The project presented in this paper concerns the implementation in the Dutch construction industry of a methodology for

sharing product information through a distributed object model. The methodology, which is called Concept Modelling, forms a

generic basis for the support of collaborative design, but is applied in this project to the integration of information from the

supply chain in the design process. Through the distributed object model, design information and product information can be

integrated while the actual data objects remain at their source. This enables the supply chain to provide information of a high

semantic level to designers while keeping the control over the information and maintaining the relationship of the information

with their business processes.

The advantages of this approach in which information is shared, rather than exchanged, are numerous. Redundancy of

information is minimised, consistency is improved, and updated information is available immediately. Moreover, design and

construction processes can benefit significantly from the dynamic aspects of accessing information that is tied to business

processes in the supply chain. For example, product selection during design can be based on latest information on product

details, prices, production methods, and variants of products. This information can be provided to designers automatically and

on demand.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Collaborative design; Product data modelling; Concept Modelling; Distributed object model; Semantic web

0926-5805/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.autcon.2004.09.004

* Corresponding author.

E-mail address: J.P.v.Leeuwen@bwk.tue.nl (J.P. van Leeuwen).

Automation in Construction 14 (2005) 491–499

www.elsevier.com/locate/autcon



1. Introduction

The availability of adequate product information is

one of the aspects in building design that have a large

effect on quality and costs of the construction process

and of the final building. Design faults are often

caused by incorrect or misconceived product infor-

mation or by improper selection of products because

of lacking information. Such mistakes in the design

stage can have dramatic consequences for the

construction process, when ad hoc solutions or

replacements of products in the least case obstruct

the process and invariably are cost-intensive, time-

consuming, and likely to have a negative effect on the

eventual quality. If such mistakes become evident

only later, while the building is already in use, the

possibilities for correction are often very limited and

the costs much higher. A survey by Josephson and

Hammarlund [1] shows that 15–30% of all defect

costs during production are caused by design mis-

takes. After construction, during maintenance, design

mistakes are the cause of 40–55% of the defect costs.

The same study shows that over 60% of the defect

costs in construction that are caused by design

mistakes can be traced to a lack of knowledge or

information.

The quality and availability of product information

depend largely on the form and media used to

distribute this information. The following aspects

determine the value of product information for design:

! Semantics (Is the meaning of the information

sufficiently defined and understood?)

! Validity (Is the most actual information available?)

! Format (Can the information be accessed and

applied directly in the design context?)

! Timeliness (Is the information found and available

when needed?)

Current practice in the supply chain of the

construction industry is to distribute product informa-

tion, for example, in the form of catalogues, either in

paper format or in a digital format that is likewise

rigid, such as CD-ROMs or documents that can be

downloaded from a website. In the more advanced

cases, information is produced on demand by web

servers and can thus be tailored to specific requests.

However, once provided, the information is no longer

controlled by the supplier and the consumer of the

information has no guarantee of its validity.

The usability of product information in design

processes also depends on how well the meaning of

the information is understood by the user. Obviously,

design support systems require a high level of explicit

semantics to be able to interpret and process data.

The research project described in this paper is

named CoDesKs, for Collaborative Design Knowl-

edge services. The objective of this project is to offer a

paradigm for information modelling and communica-

tion in design that on the one hand enhances the

explicit semantics of information and on the other

hand improves the validity and timeliness of informa-

tion in a collaborative design environment.

2. Distributing product information

The purpose of distributing product information is

generally twofold: to communicate about merchandise

and to provide details about the technical application

and organisational issues concerning the product.

There are many reasons why the information con-

cerning a product can become outdated. For various

reasons, such as commercial ones, there is a strong

urge to innovate, with new models emerging, new

materials being applied, new features added, new

options, applications, technical solutions, etc. Another

cause for the limited validity of product information is

its relation to a specific application, for example, in a

particular construction project. This relation may have

an organisational nature, such as contractual agree-

ments on prices and delivery, or a technical nature, for

example, when the applicability of a product depends

on technical aspects of the project design.

Distributing product information through cata-

logues, on paper or in digital format, does not support

the demand for up-to-date or project-bound informa-

tion. Using websites to download product data only

improves the timeliness of information; it does not

improve its shelf life. More advanced websites are

able to produce customised information, taking

project- or client-specific data into account, but again

this does not improve the validity of the information

over time after it has been provided.

The validity of information that a designer obtains

from partners in a project can only be guaranteed by

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499492



sharing the information resources. This means that,

rather than providing a copy of the information, the

information is accessed at its source where the

provider of the information has full control (and

responsibility) over it.

To achieve such sharing of information, we

propose a change of the paradigm ddistributed product

informationT from the supplier point of view to the

consumer point of view. dDistributedT no longer

means dsent to many clientsT but rather daccessed at

many providers.T Sharing distributed information

resources has the potential to improve business

processes in many ways:

! Avoiding unsolicited communication, the traffic of

information is reduced, even if there is an

increased amount of wanted traffic;

! The validity of information is improved by,

because it remains under control of the provider;

! The quality of information is increased, since it

can answer a specific request or even result from a,

possibly automated, dialogue;

! Business processes are integrated by keeping the

relationships between the processes and their

output data active.

This paper first introduces the theoretical and

technical features of the so-called concept-modelling

paradigm that implements a distributed object model

for collaborative design. It then discusses the oppor-

tunities that this technology creates for a stronger

participation of the supply chain in design processes.

3. Concept Modelling

Concept Modelling is the name of a modelling

paradigm that was developed in the CoDesKs project

at Eindhoven University of Technology [2]. The

objectives of this modelling paradigm [3] are: (a) to

give the end-user (designers or other actors in the

building process) authority over the schema of models

that are used for the representation of designs and

products; and (b) to provide a consistent information

modelling environment that supports distribution of

data sources and multi-user access.

The first objective, user authority over the model-

ling schema, is addressed by the dynamic nature of the

modelling paradigm. In principle, this is an object-

oriented paradigm, but there are many features to it

that increase its flexibility such that end-users have a

high level of control over the exact definition (and

thus semantics) of objects.

The second objective, consistent multi-user access

to distributed data, is achieved mainly by the

implementation of remote data access, using Internet

technology, in combination with an object-level

version control mechanism.

Both aspects of the modelling paradigm are

discussed in more detail in the next two sub-sections.

3.1. User access to modelling schemata

The concept-modelling paradigm uses the term

concept to denote logical notions on which reasoning

in design is based. This includes notions of con-

struction elements, like floors and walls, but also non-

tangible notions, like spaces and routing. Also,

aspects such as colour, strength, temperature, etc.,

are notions that are represented by concepts. In the

definition of a concept, there is no distinction between

the representation of objects and properties. This

distinction only becomes obvious in the application of

the concept in a modelling context. The reason for this

is that a concept will be viewed upon as an object in

one context, but regarded a property in another. For

example, a concept that represents the notion of

dusage functionT in the design of a building will be

used as object in early stages of reasoning about a

design, but will be assigned as a property to spaces

during later stages.

Concepts are defined in a formal manner, using the

following mechanisms:

! Value representation

! Interrelationships

! Prototypical versus individual concepts

! Multiple inheritance

3.1.1. Value representation and interrelationships

In its most basic form, a concept is a simple named

entity, e.g., dlength,T that can have a value, e.g., the

numeric value 5.4, and a unit for this value, e.g., dm.T
More complex concepts are defined through relation-

ships to other concepts. For example, a concept

named dsteel beamT would relate to concepts defining

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499 493



its profile, its material properties, and the concept

dlength.T The different relationships that can exist

between concepts are categorised into: decomposition,

association, and specification. The latter type of

relationship indicates that a particular aspect or detail

of a concept is specified by another concept, like the

length specifies an aspect of the beam. Decomposition

relationships denote whole-part type of relationships,

e.g., a steel beam is decomposed of a body and a

flange. Associations indicate relationships between

concepts that are in principle independent but in some

way associated, for example, the association between

a wall and a space.

All relationships between concepts are identified

using role names. These describe the particular role of

the related concept in the context of the concept that

defines the relationship.

3.1.2. Prototypical versus individual concepts

We can reason about design and model a design in

two distinct modes. One mode is to think about design

in terms of typologies. We do this when we talk about

the generic properties of, for example, a type of

building element. For this kind of reasoning, we can

model prototypical concepts (also called prototype

concepts, or simply prototypes). On the other hand,

when we reason about and model a particular design

case, we need to provide specific information about

the case, which is modelled using individual concepts

(or individuals).

While these two kinds of concepts share many

features, their meaning is slightly different.1 For

example, the value of a prototype concept denotes

the default, or assumed, value of such a concept. The

value of an individual concept, however, denotes the

particular value of that concept in the context of the

particular design case.

Individual concepts are always modelled on the

basis of prototype concepts; they instantiate one or

more prototypes and can implement all relationships

that are defined for those prototypes. This way,

building elements can be modelled that integrate

multiple design concepts, for example, an element

that integrates the functions of both wall and furniture.

The difference between prototypes and individuals

becomes particularly evident when looking at the

relationships. Relationships defined between proto-

typical concepts could be regarded as the variables of

concepts, while the relationships of an individual

provide the actual data of those variables. There are

many features of the modelling paradigm that make it

very flexible and allow, for example, ad hoc relation-

ships between individuals that have no counterpart in

the prototypes.

3.1.3. Multiple inheritance

The concept-modelling paradigm implements a

multiple-inheritance mechanism: A prototype concept

can inherit relationships from other prototype con-

cepts. This allows a structured and layered organisa-

tion of design concepts, which is an important feature

for standardisation and communication protocols.

When a prototype inherits from another prototype,

all relationships of the dsuper-prototypeT also apply to

the dsub-prototype.T Individual concepts that are based
on such a sub-prototype can implement all relation-

ships defined for the sub-prototype and its super-

prototypes. Sub-prototypes can override relationships

of super-prototypes, in order to make them more

specific.

Fig. 1 shows a network of prototype and individual

concepts. It demonstrates multiple inheritance, as well

as the prototyping mechanism.

3.2. Multi-user access to a distributed object model

The above-described features of the concept-

modelling paradigm allow designers to formalise

design knowledge and to model design cases. In

practice, they would never do this in isolation: Design

is always a process of collaboration. Even when a

particular task is not performed in direct collaboration

with other individuals, a designer will always access

or re-use information from external resources. There

are many ways to bring together information from

multiple resources. Currently, the most popular

approach is to use project webs. These are websites

where all collaborating partners in a project store their

information, making it accessible to all. The main

advantages are that such a project web provides a

1 While this approach addresses the class–instance dichotomy

as discussed in Ref. [4], it does not completely eliminate the

dichotomy, the way Fridqvist proposes.

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499494



central entry point to the project information and

allows centralisation of the data management, such as

security, backup maintenance, and document version

control.

One major disadvantage of using project websites

is that all partners need to be disciplined in keeping

the information updated at the server and must refrain

from sending information to each other through other

routes, e.g., using email. Another major problem with

project webs is that they are document-based and

draw a strict line between project-specific and project-

independent information. Because documents are

moved away from their source to the central storage

location, information that is in principle independent

of projects, such as information describing the

products and services of a company, automatically

becomes project-specific once it is entered into the

project website. As a consequence, this information is

disconnected from its source and from the underlying

business processes. This implies a considerable risk of

inconsistencies and the usage of outdated information.

3.2.1. Remote data access

The CoDesKs project has incorporated the con-

cept-modelling paradigm into an object model that

offers remote access. Essentially, this offers the

possibility to build applications that can access objects

directly at remote resources. Rather than having to

exchange information in the form of documents, such

applications can share information in the form of

objects.

The technology applied in this approach is stand-

ardised, HTTP and SOAP, through the implementa-

tion provided by Microsoftk.NET Remoting

facilities.

There are a number of conditions that need to be

met before remote data access can be practically

applied in a collaborative design context. First,

objects, and in our case these are concepts, must be

uniquely identifiable. For this purpose, concepts are

organised using the notion of namespaces that are

themselves identified through Uniform Resource

Identifiers (URIs). This mechanism provides the

capability to uniquely identify each concept and

concept relationship in a consistent and persistent

manner.

A second condition for a proper organisation of

remote data access is security. Obviously, data must

be protected from unauthorised access, while author-

ised users must have sufficient rights to read or write

data. In the concept-modelling paradigm, the system

of access rights is more complicated because there are

several levels of access that enable users to read, copy,

use, inherit, or modify concepts. Access and owner-

ship is controlled on the basis of user groups.

A third feature required from remote data access is

a locking mechanism to prevent simultaneous mod-

ifications to objects by multiple users. This is

implemented by way of a checkout mechanism. When

a user accesses data for modification, the data is

temporarily inaccessible for modification by other

users. At all times, data remains accessible for

Fig. 1. Example of a network of concepts. The prototype concept dOffice WallT inherits from the dInterior WallT and the dSound Absorbing

ElementT concepts. It overrides the inherited dheightT relationship by fixing it to 2600 mm. The dMedia WallT is an individual concept based on

the prototype dOffice WallT of which it uses the height; the length is added to this individual. The dMedia WallT also implements the prototype

dProjection ScreenT (no further details shown here).

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499 495



operations other than modifications, such as reference

or inheritance operations. The period of locking

depends on the kind of modification that the user’s

application is performing; real-time graphical oper-

ations will take longer than non-graphical changes to

data.

Finally, notification is a fourth requirement of

useful remote data access. When multiple users

access the same data resources, they probably like

to be informed of modifications to that data. A

subscription mechanism allows users to be subscribed

to notifications that are sent when data is modified.

Examples of such modifications are changes to the

design or the release of a new type of a product to the

market. To a certain extent, these notifications can be

handled by the system automatically, for example, to

update the graphical onscreen presentation. Other

notifications may require human reaction, for exam-

ple, to evaluate the consequences of a change in the

design or to consider the application of a new

product.

3.2.2. Object-level version control

Version control is necessary in a design system,

and particularly in a collaborative design system, for a

number of reasons [3]. Firstly, version control is a way

of recording user actions. Such a record can be used

for many purposes, e.g., allowing the user to undo

certain actions or enabling the user to inspect and

replay the history of the design process.

Expanding on such a timeline of the design

process, the second reason to provide version control

is that it can be used to administrate design

alternatives.

But in the context of collaborative design, version

control of objects is above all important to maintain

the consistency of an object model that is accessed by

multiple users. Changes to objects are administered

through the creation of new versions, which ensures

that the state of objects recorded in previous versions

will remain available. References between objects can

make use of the version information of objects, so that

the data consistency is not compromised when new

versions are created. Semantic consistency is, of

course, not ensured by the implementation of object

version control.

In literature, version control at the object level is

described in Ref. [5], using so-called dstampsT to

identify object versions in multi-version databases; in

Ref. [6], proposing basic operations on versions that

are identified through a succeeds relationship; and in

Ref. [7], describing referent tracking documents as a

means to control version information through hyper-

link management.

Administering versions and revisions of objects

provides a means to archive the changes to objects. In

combination with authenticated access, it is possible

to trace the changes of objects to the users who made

those changes. Having a record of the history of each

object also facilitates the browsing and restoring of

previous states of a design model. This also has

potential for, e.g., the narrative representation of

designs and for computer applications used in design

education and research.

In the concept-modelling paradigm, version

information for objects is organised into three levels:

major versions, minor versions, and revisions. These

three levels relate to the kinds of modifications that

can be made to objects. A modification to an object

is started by a checkout of the object, which locks

the object for modifications by other users. It is

concluded either by committing a new revision or

by submitting a new version. Revisions are used to

accumulate modifications until the user concludes

that a new version is ready to be created. New

versions are in principle minor versions, unless

either the user or the system requires the creation

of a new major version. The system will require a

new major version when it cannot automatically

upgrade references by other objects to the next

version. This helps identify potential consistency

issues in the model that require attention by the

user.

This approach of storing all modifications as

revisions or versions of objects helps to increase the

consistency and integrity of the objects and the

relationships between objects from various resources.

At the same time, it requires smart ways of

identifying objects when making references to

versions and resolving and updating these references.

The object versioning mechanism implemented in

the concept-modelling paradigm utilises timeline

management for this purpose. The timeline of an

object administrates the beginning and ending of

each revision and version. Through this mechanism,

it is possible to identify the relevant relationships for

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499496



a given concept and the concepts that form its

context. An example of the timeline of concepts and

relationships between concepts is shown in Fig. 2,

which also illustrates the three levels of references

required for this versioning system. Details of the

implementation and implications of the object

version control mechanism and the timeline manage-

ment can be found in Ref. [3].

3.3. Related developments

The information modelling approach proposed in

the concept-modelling paradigm bears much resem-

blance with technologies such as XML [8] and RDF

[9] and with the development of the Semantic Web

[10]. While a thorough comparison is outside the

scope of this paper, it is relevant to mention here

that the concept-modelling paradigm could be

regarded as a more specific form of semantic web.

Where the W3C Semantic Web effort aims to

standardise a very generic way of expressing

semantics for the context of the world-wide web,

the concept-modelling paradigm goes somewhat

further in its classification of relationships between

objects (comparable to the predicates in RDF). In

comparison with the semantic web, the structure of

prototype and individual concepts is also more

restrictive. The reason for these restrictions is that

we believe that the ability to make more detailed

assumptions on the structure of information offers us

better opportunities to develop more intelligent

support, for example in the form of case-based

reasoning tools and agent technology.

4. Opportunities for the supply chain

The capabilities of defining and sharing active

information and its semantics were developed in this

project to support an expressive, yet formal, way of

modelling designs and to support collaboration

between designers. At the same time, these capabil-

ities allow other partners in construction projects,

including the supply chain, to become more actively

involved in the process of collaborative design. As set

out in the introduction of this paper, the availability of

product information in the design process has a major

influence on the quality and costs of the final design.

Therefore, the ability to increase their role as active

participants in design processes is an exciting

opportunity for product suppliers. Besides offering

competitive products, the challenge is now to offer

high-quality information about products and informa-

tion services relating these products to design projects.

Fig. 2. Left: Example of a timeline of concept versions. At moment t5, the relationship a from concept C1 to concept C2 is changed into a

relationship to concept C3. Although this does not lead to a new version of concept C1, this change can be traced through the concept’s timeline.

The figure on the right shows the three levels of references related to the three levels of version information. Reference type a refers to the

logical object, while reference type c refers to the minor version. References to revisions are irrelevant [3].

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499 497



The new technology to share information contents,

the semantics of information, and the access to our

business processes, opens up almost limitless oppor-

tunities in e-commerce. First, semantically well-

defined information improves the process of product

selection and offers a chance to better inform design-

ers about the qualities and features of products. But

the implications of this new technology go far beyond

this point in improving the relationship between

supplier and designer:

! Information objects from the supplier become

active objects in the context of the design project.

They will update themselves, or notify the

designer when updated information is available.

! When enhanced with knowledge about the appli-

cation of a product, information objects can react

to the development of the design, for example by

adjusting the features of the product in accordance

with its context. This behaviour of the information

object does not need to be incorporated into the

design application, which is the approach followed

in the development of today’s CAD systems. In the

distributed object model, design objects and

product objects from multiple resources form an

integration of knowledge from various disciplines.

! Taking this one step further, the supplier’s infor-

mation objects can be tied to business processes

such as sales, production, and delivery. On the one

hand, this allows designers and project developers

to take this type of information into consideration

already during design. On the other hand, it

facilitates and promotes the re-usage of informa-

tion models from design stages into construction

or even facility management stages.

5. Implementation and related developments

The concept-modelling paradigm is developed and

implemented in the CoDesKs project in the form of an

information-management module that takes care of all

storage, access, and modification actions on the

concept databases. This core module also manages

the remote access, the object-based version control,

and the resolution of object references. It provides an

application–programming interface that can be used to

develop either client applications or, e.g., web

interfaces. The concept database is currently persisted

in a relational database, but interfaces on the basis of

XML and RDF are planned.

The results and experience from the CoDesKs

project are currently being input in the development of

an industrial standard for integrated software for the

Dutch architectural design market. This standardisa-

tion effort, named Het Digitale Huis (The Digital

House) is a project initiated by Dutch CAD vendors

and aims to market new software products based on

this standard on a very short term. The suite of

products that these software houses develop on the

basis of this standard range from CAD software to

tools for specification writing, project management,

product selection, building codes checking, and

facility management. Initial prototyping of the con-

cept-modelling paradigm in this context aims at

improving the module for product selection that is

used in the applications for architectural design and

specification writing.

In two other research projects at Eindhoven

University of Technology, the usability of distributed

object models is investigated.

The first project concerns the development of a

method for evolutionary development of design

alternatives subject to a set of performance constraints

and user requirements. National and local building

codes are regarded primarily as constraints that a

building design must satisfy [11]. These constraints

are derived from national standards, developed by

national standardisation institutes. They are often

subject to changes. In the distributed object model

approach, the standardisation institutes would main-

tain constraint-objects and provide remote access to

them. This way, conformance-checking applications

can always use the latest versions of the building

codes.

The goal of the second project is to develop an

application that checks if a building is designed

according to the local zoning plan. During the design

process, the designer must have access to the latest

version of the zoning plan. Vice versa, the local

government needs to have access to the most up-to-

date state of the building design, also after the

construction of the building. For the latter purpose,

authorities would not want to rely on remote access,

but always have the latest data with respect to

buildings, infra structure, sewer system, etc., in their

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499498



possession. Working with local copies that remain a

more or less active relationship with the original data

at its source is one of the future developments planned

in this ongoing research.

In the context of building code checking, recent

experience is gained with the development of a project

concerning the process of online applying for building

permits. In particular, this project targeted the building

permits for dormers, which form about 30% of the

smaller projects that require building permits in a city

like Rotterdam. The project has developed an online

bdesignQ application that allows home owners, nor-

mally lay persons with respect to designing, to

construct a virtual dormer on a 3D model representing

their house. The web application provides instant

feedback regarding the required building permit and

whether or not the design meets the criteria posed by

the municipal aesthetics committee, which is part of

the normal procedure for building permits in the

Netherlands [12].

Acknowledgement

The authors are grateful to Sverker Fridquist who

has worked with us on this project for two years and

has contributed with many valuable concepts.

References

[1] P.E. Josephson, Y. Hammarlund, The causes and costs of

defects in construction—a study of seven building projects,

Automation in Construction 8 (1999) 681–687.

[2] J.P. van Leeuwen, Computer support for collaborative work in

the construction industry, Proceedings of the International

Conference on Concurrent Engineering. Funchal, PT. 26 July

2003.

[3] J.P. van Leeuwen, S. Fridqvist, Object version control for

collaborative design—characteristics of the concept-modelling

framework, E-Activities and Intelligent Support in Design and

the Built Environment—9th EuropIA International Confer-

ence. Istanbul, TR. 8 Oct. 2003.

[4] Fridqvist, S. 2000. Property-Oriented Information Systems for

Design. PhD thesis, Lund University, Sweden.

[5] W. Cellary, G. Jomier, Consistency of versions in object-

oriented databases, Proceedings of the 16th VLDB Confer-

ence, AUS, Brisban, 1990, pp. 432–441.

[6] P.A. Bernstein, Repositories and object-oriented databases, in:

K.R. Dittrich, A. Geppert (Eds.), Datenbanksysteme in Buro,

Technik und Wissenschaft (Proceedings of BTW Conference),

Springer Verlag, Berlin, 1997, pp. 34–46.

[7] W.E. Kimber, S. Newcomb, P. Newcomb, Version manage-

ment as hypertext application: referent tracking documents, in:

B.T. Usdin (Ed.), Proceedings of Markup Technologies ’99.

Philadelphia, PA, USA. 7 Dec., 1999, pp. 185–198.

[8] W3C. 2003a. bW3C Extensible Markup Language (XML).Q
http://www.w3.org/XML/.

[9] W3C. 2003b. bW3C Resource Description Framework

(RDF).Q http://www.w3.org/RDF/.
[10] W3C. 2003c. bW3C Semantic Web.Q http://www.w3.org/

2001/sw/.

[11] A. van der Zee, B. de Vries, Computer aided evolutionary

architectural design, in: C. Soddu (Ed.), Proceedings of the

5th International Conference on Generative Art, 2002, pp.

9.1–9.13 Milano, I.

[12] J.P. van Leeuwen, A.J. Jessurun, E. de Wit, The digital

dormer—applying for building permits online, Proceedings of

the European Conference on Product and Process Modeling

(ECPPM), Istanbul, TR. 7–10 Sep. 2004.

J.P. van Leeuwen, A. van der Zee / Automation in Construction 14 (2005) 491–499 499

http://www.w3.org/XML/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/



