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Abstract: This paper reports the first phase of a research project to implement and apply 
Feature Type Recognition (FTR). This technology has many potential areas of 
application, such as case retrieval, product finding, translating models between 
schemas, and certain types of analysis.  

Feature Type Recognition is part of the Internet based design knowledge sharing 
system developed at the authors’ department. The system allows communication of 
highly abstract concepts as well as concrete data. Additionally, it supports a 
layered approach to modelling, which will facilitate standardisation efforts.  

Feature Type Recognition is the process of finding feature types that correspond to 
a specific feature instance. The paper shows how feature based modelling creates a 
foundation for feature type recognition. Additionally, it presents and discusses how 
the Recognizing Feature Manager has been implemented. 

Application of Feature Type Recognition to building product finding will take place 
in the second phase of the research project. However, the paper already discusses 
basic principles of how this can be done. 
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Introduction 
Feature Type Recognition (FTR) is the ability of Feature Based Modelling (FBM) to recognize what 
feature types might fit a particular feature instance. Thus, a part of a design modelled as feature instances 
can be analysed in terms of previously defined feature types. This can be used for many purposes, one of 
which is to find building products that would fit in a particular design. 
The feature manager is the central part of the application that takes care of maintaining the database and 
keeping it self-consistent according to the rules of FBM. 
Feature based modelling is a modelling framework developed by Jos van Leeuwen at Eindhoven 
University of Technology to support design at early stages [van Leeuwen 1999]. It achieves modelling of 
generic design concepts through feature types, and of individual design objects through feature instances. 
FBM is property oriented, i.e. the basic modelling objects of FBM represent properties of things in 
addition to the traditional classes of things [Fridqvist 2000; van Leeuwen, Hendrix, Fridqvist 2001]. Thus, 
the designer can let the model develop as required by the design, by adding properties to the design model 
as they become known. 
In FBM, feature types are defined in terms of other feature types. Thus, high-level concepts are defined in 
terms of simpler ones. The user can define new feature types to model whatever concept he finds useful. 
Nevertheless, also user-defined feature types can be successfully communicated, provided they are based 
on feature types that are already known to both communicating parties. 
Since FBM defines a generic modelling schema, it is able to represent a wide range of concepts, including 
buildings and building parts. Furthermore, it supports modelling functionally defined things as well as 
things defined by their composition or other attributes. This enables the user/designer to define the design 
in terms of function at early stages and to add information about the specific implementation later on. 
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The possibility to specify things functionally combined with FTR opens an interesting range of 
possibilities. Given libraries of suitably defined feature types, it should be possible to: 

• Find previously stored designs that satisfy a set of requirements (a.k.a. case retrieval). 
• Find products that satisfy a set of requirements (a.k.a. product finding). 
• Translate models based on one schema to another schema. 
• Determine if a design proposal satisfies specified requirements. 

The research project reported in this paper has implemented FTR and applies it to product finding, as a 
demonstration of its applicability. 

DesKs 
The research project reported here has a parallel project that aims to develop Design Knowledge Servers, 
DesKs [van Leeuwen and Fridqvist 2002]. This project aims to develop a system of networked servers 
and clients that manage and distribute design knowledge between designers. The rationale of the system 
is to support collaborative design, but it will also serve other purposes such as creating repositories for 
public design information. It could thus serve as the “building product information gateway” to serve 
designers with product information, which has been described by Augenbroe [1998]. 

Modelling products to support product finding 
To serve as an example for evaluation and demonstration, a small product database will be implemented 
in the FTR-enabled DesKs application. This belongs to the second phase of the research project, thus 
conclusive results are not expected until later this year (2002). Nevertheless, some requirements that 
product finding puts on FTR are presented here to highlight some of the complexities of implementing 
FTR in the context of feature based modelling. In particular, to successfully implement FTR does not 
only involve writing the FTR program code, but also to study how to use the FBM framework for 
modelling. 
To support product finding, the functional properties of a product need to be modelled as well as other 
properties such as shape, material, colour etc. The FBM framework supports the “rich product semantics 
that provide complete product models with embedded links to relevant codes and regulations, 
specifications, geometry, assembly instructions, etc.” that will be the foundation of electronic product 
catalogues [Jain and Augenbroe 2000]. Such catalogues will, according to these authors, “offer added 
capabilities such as: dynamic updates; sophisticated search capabilities based on performance criteria, 
availability; multiple information sources; customisation based on user/firm preference. ” 

Feature Based Modelling 
The following part is a brief explanation of some important parts of the FBM framework; for an in-depth 
description, the reader is directed to other accounts of the FBM framework, in particular [van Leeuwen 
1999]. The text here focuses on constraint types, which are treated only briefly in earlier texts. 
FBM models generic concepts through feature types, and particular individuals through feature instances. 
Thus, a model consists of a collection of interrelated feature instances, which refer to generic concepts 
modelled as feature types.  

Complex features are defined trough components 
In the FBM framework, features bearing higher-level meaning are created by combining lower-level ones 
in a structured manner. Complex features combine other features, both at the type level and at the instance 
level, through components that connect higher-level features to lower-level ones. Components are named, 
and can have one of three role types that define the relation between the higher-level feature and the 
lower one, i.e. decomposition, specification or association. A component thus defines what role the lower 
features play in the context of the complex feature. 
Additionally, at the type level components include cardinality information, which defines the lower and 
upper limits of the number of instances that, at the instance level, should be related through one single 
component.  
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Subtype-supertype hierarchies 
In addition to components, feature types may be arranged in subtype-supertype hierarchies. The subtype 
inherits all components of its supertype, but it may re-define them to be more specific. Similarly, a 
subtype inherits the constraint assignments of its supertype (see next part). 

Constraints 
Constraint feature types define constraints on a generic level. They include a list of typed parameters, and 
an expression that defines the actual constraint.  
Constraints serve two different but related functions; at the type level, when used in a complex feature 
type definition, they form part of the semantic content of the complex feature type. At the instance level, 
constraints are used to evaluate the model; the result is either fulfilled or not fulfilled. 

Constraints used to define semantic correlation between components 
Presently, two uses have been established for constraints in complex feature types. The first is to define a 
semantic correlation between components. FBM supports defining tree-structured hierarchies of feature 
types, with a generic type at the root and more specific types at the nodes. Often, it might be desirable to 
define a component with a cardinality > 1 for a generic type, while more specific types need to name one 
of the fillers1 separately through a specific component, see the example in Figure 1. However, the filler 
should fill both roles, both the generic one and the specific one. To express this kind of inter-component 
relationship, a new construct has been added to the original FBM framework as defined in [van Leeuwen 
1999]. The addition is similar to the component, and a complex type may have several such constraint 
attachments. A constraint attachment specifies a constraint type, and links the parameters of the 
constraint type to the components of the complex type. 
The usefulness of constraints is shown by the example illustrated in Figure 1. The rounded boxes are 
feature types; triangle-ended lines are supertype relations; circle-ended lines are decomposition relations: 

• The feature type Vehicle is defined as having a component wheels, which defines that the vehicle 
has at least one Wheel as parts. 

• A Bicycle is a subtype of Vehicle and inherits the wheels component from its supertype Vehicle. 
Bicycle additionally has two components of its own, frontWheel and rearWheel, both of which 
are of type BicycleWheel. 

• BicycleWheel is a subtype of Wheel. 

Bicycle

Vehicle

BicycleWheel

wheels [0..1]

frontWheel

rearWheel

Wheel

 
Figure 1 Illustration to show a use for constrain (FBM graphical notation) 

Since the current version of the FBM graphical notation has no means to represent constraint expressions, 
the constraints that define how the components are semantically related for the type are not visible in 
Figure 1. However, there would need to be three constraints to correctly define the Bicycle feature type: 

• Any instance at frontWheel is also an instance at wheels, i.e. a front wheel is one of the wheels. 
• Any instance at rearWheel is also an instance at wheels, i.e. the rear wheel is one of the wheels. 
• Any instance at frontWheel is not an instance at rearWheel, i.e. there should be two distinct 

wheels. 

Constraints used to model the structure of things at the type level 
A second use for constraints in complex feature type definitions is to model a thing’s structure at the type 
level. The ability to define the structure is necessary for modelling functional properties, since these are 
part of the structure. The structure of a thing can be parted in the internal structure and the external 

                                                           
1 A filler is an instance that is linked to another instance through a component. In other words, the filler fills the role specified by the 
component. 
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structure, where the internal structure is the complex of relations among the parts of the thing, and the 
external structure is the complex of relations between the thing and its environment [Ekholm & Fridqvist 
1996]. 
To highlight how constraints are used to define the structure of things, we will use the following example, 
illustrated in Figure 2. In this case, we want to define a type that would be instantiated as to the right of 
the figure; the corresponding type is illustrated to the left. 

Figure 2 Modelling structure in FBM; type level to the left and instance level to the right 

The reader should note that the feature type Part to the left only defines that the component a should be 
filled by some instance of type Part, not what particular instance. Apparently, adding the two 
components A and B to the type Whole is not sufficient to ensure the desired outcome. The necessary 
additional piece of information can be contributed by adding a constraint at feature type Whole, to 
constrain the sub-component a of component A to be identical with component B. 
As we can see, using constraints to define structure requires constraint expressions to be able to access the 
interiors of components. Support for this has been included in the implementation. 

Implicit components 
It should be noted that feature types serve two different but related purposes. Firstly, they are templates 
for creating instances. Secondly, a type defines the semantic meaning for any instance that complies with 
its definition, whether it was initially instantiated from the type or not. 
Because of the first fact, it is often not necessary to instantiate all components of a feature. Only if the 
user wants to differ from the definition of the type, from the default, components need to be created. This 
is utilised to capture the user’s conscious moves. All features and components in a model have been 
actively put there by the user, and thus represent conscious user design moves. 
However, in some cases the components prescribed by the type are needed. A common occasion for this 
is when the user tries to inspect the details of his model, below the level where he has explicitly defined 
components. Another example is if the model is to be evaluated; then the evaluation application may need 
these data to perform its activity. To supply the data, the manager has a mechanism to provide implicit 
components, i.e. components (and their fillers) prescribed by an instance’s type but not explicitly created 
by the user. 
An additional benefit of the implicit component mechanism is that it allows the user to model at a high 
semantic level, since it can provide all details defined by the types when necessary. It also makes 
automated schema translation possible, by providing the basic components that are the common basis for 
translation. 
Creating implicit features may involve inter-relating them with other features, to provide the structure of 
the thing modelled by the feature. For this purpose, constraint feature types are used to determine what 
actual feature instances should be related, and through what relations. 

Feature Type Recognition 
While a feature instance is created based on a specific feature type, the user is free to add to and change 
the components. Thus, after a while a feature instance may no longer be a true instance of the original 
type. As a result, the higher-level meaning of the instance may have become hidden, i.e. it is not explicit, 
but only implicit in terms of the combination of its lower-level concepts as defined by the components. 
To make the meaning explicit, a higher-level concept needs to be found that represent the actual meaning. 
This is achieved through feature type recognition (FTR). 
The FTR function can be used for other purposes. It can be initiated either by the (human) user, or by 
some application. For the user, FTR can clarify the meaning or interpretation of a model that has 
undergone many changes, as said above. It can also suggest further development of the design by 
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showing various ways to make a general model more specific, or vice-versa. This functionality is utilised 
in the application part of the research project that runs in 2002. 
For applications, FTR can support analysis of models by re-classifying model features according to type 
libraries defined for the purpose of analysis. This functionality might also be used to translate models 
between different modelling schemas, and thus support data exchange. 

How FTR is implemented 
FTR finds the types that best cover the present status of a feature instance by comparing the components 
of the instance with the components of the types. The FTR algorithm has two phases. The first is to find 
applicable candidates, i.e. feature types that might be an appropriate type for the instance. The second 
phase is to select one or several of the candidates. To accomplish this, the candidates first are sorted 
according to applicability. 

Finding candidates 
In short, if a feature instance A has a component with an instance a of a specific type t, the instance A may 
be recognised as the type T, which has t as one of its components. The process of finding candidates 
proceeds through the following steps, as shown in Figure 3: 

1. Inspect all the component features. 
2. Collect the types of all component fillers (2.1) as well as the fillers’ supertypes (2.2). 
3. For each type t from step 2, collect the types where t is a component. The result is the list of 

candidate types. 
4. For each of the types from 3, add the subtypes to the candidate list. 

Figure 3 The algorithm for finding feature type candidates. 
Legend: Rectangles represent feature types and instances. Thin straight arrows represent relations 
defined by FBM. Thick curvy (green if rendered in colour) arrows represent how the FTR process 
traverses the feature data. 

Ad 2. The reason for including the supertypes is that it is always allowed to use a more specific feature 
instance for a component than is defined in the corresponding type. An example: When modelling a door, 
the ‘door’ type may define that a ‘door handle’ should be one of its parts. However, the designer may 
want to specify a specific make of door handle. Thus, the actual instance is more specific than the ‘door’ 
type prescribes. If we are about to apply FTR to the door instance, we need to consider the generic ‘door 
handle’ to be able to find the ‘door’ feature type. 
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The set comparison constraints have an impact on the on FTR process. The “subset” constraint expands a 
component to include other components. Thus, given the types in Figure 2, if we have an un-typed 
complex instance that has an instance of BicycleWheel as a wheels component, the FTR mechanism 
should suggest that the complex instance is recognised as a Vehicle type and as an incomplete Bicycle 
type. The former (Vehicle) because a BicycleWheel is a subtype of Wheel, which is defined as part of a 
Vehicle. The latter result (Bicycle) is obtained because a Bicycle has two BicycleWheels as wheels 
components, but is incomplete since it lacks the frontWheel and rearWheel components. 

Selecting candidates 
Currently, the (human) user does the selection from the list of found candidates. To aid the user, the list is 
ordered according to applicability. The ordering is based on several criteria, such as: 

1. How well does the candidate’s set of components match the actual components of the instance? 
2. How well do the candidate’s components match the instance’s component fillers? 

In criterion 1, components are compared only if the role types are identical. Furthermore, the role names 
need to be identical, or there need to be a constraint that equalises two role names (see above). There 
might be an exact match of components between the candidate type and the instance, or the type may 
have more or less components than the instance. If a type has components that the instance lacks, it 
represents a specialisation of the instance. Choosing such a type implies adding the missing components 
to the instance. 
Criterion 2 might introduce an element of recursion, since correct types of the instance’s fillers need to be 
known before the evaluation can be made. Currently, however, no typing of the fillers is made. The main 
reason for this is that currently the user needs to make the final selection of the type. It would be too 
confusing to repetitively have to select the type of subcomponents. To be efficient, recursion needs 
automatic type selection. 
The problem of how to automatically select types is studied in the second year of the research project 
(2002), but the subject is not ready for conclusions at the time of writing. Nevertheless, it can be said that 
the final outcome of an automatic FTR process depends on what weights are given to the different 
matching criteria, and the problem consists of determining what impact different weights will have. 
Plausibly, different settings would be preferable for different purposes. What is already clear is that an 
automatic FTR process should not add information to a model. Thus, an automatic process will not 
consider candidates that might be presented to a user as suggestions for further specifying a design model. 

Conclusions and future work 
The feature based modelling frameworks and the Design Knowledge Servers technology can provide the 
functionality needed for serving building product information. 
Feature type recognition is a powerful technology for searching semantically high-level data, and is an 
important part of the DesKs technology. FTR makes it possible to find building products based on 
functional requirements of building parts. 
The DesKs technology will be further developed at the Design Systems group at the Eindhoven 
University of Technology, as part of the VR-DIS research programme [de Vries et al, 2001]. 
Using a property-oriented design system involves adding properties to objects that represent the design 
and its parts. This allows the user to complete the definition of a part in one simple action by using FTR 
to find applicable types for the part and then to choose the best one, e.g. one that represents a product 
supplied by a manufacturer. Well-designed type libraries will ensure that the chosen product complies 
with the requirements as expressed in the model. To actually provide the well-designed feature libraries is 
a major task and beyond the scope of the current research project. It involves extensive analysis of the 
needs of all different actors in the design, construction, use, and management of buildings, and thus forms 
the object for future research. 

FTR and the semantic web 
Feature based modelling aims to heighten the level of semantic content of design modelling. Feature type 
recognition augments this capacity by introducing a kind of semantic analysis of feature models. With the 
introduction of DesKs servers, this capacity is extended to the Internet. The DesKs server approach 
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promises a network of interconnected design knowledge servers that will make semantically high-level 
design information available to any designer connected to the network. 
Currently an effort is made to create the so-called semantic web [Berners-Lee et al. 2001]. The aim is to 
enable computer software to access the semantic content of data and to assist humans in finding 
meaningful information. Obviously, this work has much in common with the research on design 
knowledge servers and feature type recognition. It may thus be a task for the future to study how DesKs 
servers and FTR can fit into the general idea of the semantic web.  
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