
Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

XML FOR FLEXIBILITY AND EXTENSIBILITY OF DESIGN
INFORMATION MODELS

JOS P. VAN LEEUWEN AND A.J. JESSURUN
Eindhoven University of Technology, The Netherlands
Faculty of Building and Architecture, Design Systems Group
http://www.ds.arch.tue.nl

Abstract. This paper reports on a research project that aims to
develop a design support system for early design stages. The dynamic
way of handling information during early design imposes special
requirements on the information modelling approach for which XML-
Schema appears to provide promising solutions. The paper discusses
the XML-Schema implementation of the so-called Feature-Based
Modelling framework.

1. VR Design Information Systems

The VR-DIS research programme aims at the development of Virtual Reality
– Design Information Systems. These are design and decision support
systems for collaborative design that provide a VR interface for the
interaction of designers with both the geometric representation of a design
and the non-geometric information concerning the design throughout the
design process. The major part of the research programme focuses on early
stages of design [Achten, de Vries, and van Leeuwen 2000]. The programme
is carried out by a large number of researchers from a variety of disciplines
in the domain of construction and architecture, including architectural
design, urban planning, building physics, structural design, construction
management, etc.

Modelling early design information is a research topic that has gained
much attention in recent years. Examples of other projects with comparable
approaches can be found in [Ekholm and Fridqvist 1998], [Fridqvist 2000],
and [Hendricx 2000].

In this project, the objective of modelling early design information is to
represent the intentions of the designer as accurately as possible. Designers
handle information in a dynamic way that design systems should support.

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

Strict hierarchies in predefined classifications of design elements are not
what designers like to work with in early design. Rather, the identification of
design concepts, the development of typologies and the ability to sometimes
follow, sometimes go against (self-imposed) rules are important issues for
creative design.

2. Features, flexibility and extensibility

Design information modelling, in the VR-DIS research programme, is done
using a technique called Feature-Based Modelling (FBM). This technique
has its origins in mechanical engineering, but has been adapted to the
context and requirements of architectural design by [van Leeuwen 1999]. A
framework for modelling design information has been developed that is
basically an object-oriented approach, but that has a number of additional
characteristics to support a dynamic way of handling design information.
Objects in this approach are called Features, or Feature instances, classes of
objects are called Feature types. The dynamics of the approach are
manifested in extensibility of the set of Feature types and the flexibility of
the Feature instances of these types.

2.1 EXTENSIBILITY

Extensibility involves giving the designer the tools to define new Feature
types that represent design concepts. Compared to pure object-oriented
systems, this aspect allows the user of the system to have influence on the
class definitions, defining new classes from scratch or deriving new classes
from existing ones [van Leeuwen and de Vries 2000].

2.2 FLEXIBILITY

Flexibility is provided by the Feature-based approach in a number of ways.
First of all, relationships in the information model are based on references,
which ensures a maximum of flexibility concerning sharing of information
between elements of the model. Both in the definitions of Feature types and
in the composition of Feature instances, all relationships are defined as
references to types or instances. For example, characteristics such as colour
and durability are not properties owned by building elements, but are
properties referenced by building elements. This makes it possible for
elements to share properties, which is very similar to the way we speak
about these elements: the doors in the building have the colour blue (many
doors, one colour).

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

A second aspect of flexibility is that designers can add relationships to
Feature instances that have not been defined in the corresponding Feature
types. This provides a means to model ad-hoc design information without
the need to first formalise a new typology or modify an existing one. Again,
this is much like the way we think about objects around is: this element is a
roof, but, in addition to my general concept of a roof, this one has solar
panels attached to it. The relationship between the roof and the panels is not
defined at the type level, but added at the instance level. Compared to pure
object-oriented approaches, this kind of flexibility allows the user to supply
properties to an object that are not defined in its class.

2.3 DESIGN AND IMPLEMENTATION OF THE FBM FRAMEWORK

The framework for Feature-Based Modelling is designed as a layered
information model (see figure 1). The bottom layer of this model contains
design data in Feature instances that comprise a Feature model. This layer
depends on the middle layer which contains the definitions of the Feature
types. Feature types are organised into Feature type libraries. The flexibility
and extensibility of the framework are manifested in the top layer, the so-
called meta-layer, which defines the format for both the Feature types layer
and the Feature instances layer. The meta-layer contains the structures and
rules that determine the way Feature types are defined and the way Feature
instances are modelled.

Figure 1. Feature-Based Modelling

framework.
Figure 2. VR-DIS: OODB system

implementation.

For the definition of Feature Types and the description of Feature
Instances, a C like language has been developed. The FBM framework is
implemented as an API (Application Programming Interface) providing a
data management environment for the development of design system

Meta-Layer
classes of Feature Types and
classes of Feature Instances

Feature Types
formalised design concepts

Feature Instances
composition of a design model

defines format of

instantiated into

VR User
Interface

User

Feature
data

Geometry
Engine

Feature Management Core

OODB – SDK

other
modules

Feature
Management

Module

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

prototypes (see figure 2). The previous version of the API was implemented
to use an object-oriented database (OODB) for storage of types and
instances.

The implementation of the API with the OODB had a number of
disadvantages. The dependency of the OODB, a commercial software
development kit (SDK), was considered the most problematic. This
particular software is not common technology that can easily be shared
among a wide range of applications, including existing applications. In
addition, the OODB approach required a relatively large effort to implement
the desired functionality. Finally, it lacked adequate support to generate
unique identifications for worldwide information sources that were suitable
for human interpretation. This strongly limited the capabilities of the system
to reuse Feature type definitions from other sources, which is one of the
research objectives.

3. Potential advantages of XML-Schema for FBM

eXtensible Markup Language, abbreviated XML, is a restricted form of
SGML that can be used to define the logical structure in documents and
constraints on the contents of documents [W3C-XML 1998]. XML provides
a syntax and generic mechanisms to structure data in documents. Documents
that are structured in XML basically have a tree-like structure but may also
contain references; XML is similar to, but syntactically richer than HTML.
Any kind of data may be contained in an XML document, as long as it is
structured in elements (tags). Attributes can be added to the elements to
further provide information about their content, for example:

<space type=”office” area=”23.5”>Room 4.07</space>

In this example, space is an element with attributes type and area. The
contents of the space element is Room 4.07. An XML document is well-
formed if its contents complies with the syntax defined for XML. This
means that a well-formed XML document has some kind of logical, tree-like
structure, that is formatted using the XML syntax of elements, attributes, etc.
An XML document may also be valid if its contents complies with the
constraints defined for that particular type of document. Document types are
defined in so-called DTD’s (Document Type Declarations). Validation of an
XML document with its DTD involves checking whether the right elements
and attributes are used in the document. It provides a much more strict level
of syntax checking than the XML well-formedness check does. A
disadvantage of the DTD approach, however, is that DTD’s are written in a
different language than XML, which is not very practical. Moreover, the
DTD language provides only a few data types.

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

As an alternative to DTD’s, XML-Schema [W3C-XML-Schema 2000]
has been developed to define the logical structure of XML documents. Just
like a DTD, an XML-Schema defines logical structures and constraints on
data contents that can be used by XML documents. An XML-Schema is
itself written in XML. The underlying vehicle for the functioning of XML-
Schema is XML namespaces [W3C-Namespaces 1999]. A namespace
defines a scope for elements and attributes in an XML document. In addition
to what can be declared using a DTD, XML-Schema provides a larger set of
data types and allows inheritance in types. Inheritance makes it possible to
declare restrictions and extensions of types.

3.1 SIMILARITY OF CHARACTERISTICS

Three important characteristics of the FBM framework and XML-Schema
show striking similarities.

1) Both the FBM framework and XML-Schema provide a syntax to
declare logical structures of data. In the FBM framework there is a syntax to
define libraries of Feature types; XML-Schema defines a syntax (actually an
XML namespace) to declare data types and structures of elements to be used
in XML documents. In the FBM framework a syntax is provided for the
description of design model data in Feature instances that are created from
Feature types; in the XML-Schema approach, data is provided in XML, with
reference to the appropriate XML-Schema.

TABLE 1. Defining types and instances in the FBM framework and XML-Schema.

Purpose FBM framework XML-Schema
Defining structure Syntax for Feature

type definition in a
Feature type library.

The elements in the XML-
Schema namespace* are used
to write an XML-Schema
declaration.

Data description Syntax for Feature
instance descriptions
in a Feature model;
Feature instances are
instantiated from
Feature types.

The XML elements and
attributes, declared in the
XML-Schema, are used to
write an XML instance
document that conforms to
the XML-Schema.

* http://www.w3.org/2000/10/XMLSchema
2) Since users may have access to an XML-Schema, the typologies and

structures that are available to them to write documents are extensible, in a
similar way as Feature type libraries are extensible.

3) Using the mechanism of namespaces, it is possible to add elements and
attributes to a document’s structure that are not declared in the XML-

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

Schema, as long as the schema allows this, without violating the rules of
XML well-formedness. Moreover, additional elements and attributes may be
declared in other XML-Schemas that are referred by the document as well.
This compares to the ability of the FBM framework to model relationships
between Feature instance that are not defined by the Feature types.

3.2 USING XML-SCHEMA FOR FBM

XML and XML Namespaces are currently W3C recommendations; XML-
Schema is a candidate recommendation. Speculatively speaking, this means
that XML-Schema will become a standard for many applications [O’Brien
and Al-Biqami 2000] and for data-exchange environments like, for example,
in the Industry Foundation Classes [Liebich and Yoshinobu 2000]. Also, it
can be expected that software development tools will (continue to) become
available for implementation of XML-Schema. Both the development of
applications and the functionality of applications can benefit greatly from
the usage of standardised techniques.

For sharing of Feature type libraries through Internet, unique
identification of libraries and types is required. Namespaces in XML, when
used with Uniform Resource Identifiers, provide a mechanism to do this in a
human interpretable manner. If additional constraints are imposed on the
usage of namespaces, this mechanism can also be used for the
communication of Feature type libraries through Internet.

4. New modelling approach with XML-Schema

In the XML-Schema approach, Feature types are defined as elements in
XML-Schema. Instantiation of Feature types into Feature instances is done
in XML instance documents, by writing elements as defined in the XML-
Schema. An incomplete extract of a small Feature model with instances is
the XML instance document shown in table 2.

In line 4 of this document, a namespace is declared that defines a number
of elements and attributes that form a meta-level for the definition of Feature
types and instances, such as the Model element used on line 3. Line 5
declares a namespace for a library of Feature types representing spatial
concepts, such as Area and Room.

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

TABLE 2. XML instance document containing a Feature model.

 XML instance document containing a Feature model
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<?xml version="1.0" encoding="UTF-8"?>
<!-- author: Design Systems group (TU/e) -->
<ftrbase:Model
 xmlns:ftrbase="http://www.ds.arch.tue.nl/ftrbase"
 xmlns:spatial="http://www.ds.arch.tue.nl/ftrlib/arch/spatial"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 name="Offices">
 <spatial:Area name="Area1" value="29.7"/>
 <spatial:Room name="Office1">
 <ftrbase:Author>Joran</ftrbase:Author>
 <ftrbase:Description>Room 4.14</ftrbase:Description>
 <area ref="Area1"/>
 <enclosedBy ref="WallB" index="1"/>
 <enclosedBy ref="WallC" index="2"/>
 <numberOfWorkplaces xmlns="" ftrbase:ref=”NoDesksInOffice1”/>
 </spatial:Room>
 <spatial:Wall name="WallB">
 <ftrbase:Author>Joran</ftrbase:Author>
 <element ref="ElementB1" index="1"/>
 <element ref="ElementB2" index="2"/>
 </spatial:Wall>
<!-- -->
</ftrbase:Model>

The first Feature instance, Area1, is of the Feature type Area and has a

value of 29.7. The used Feature types are explained below. The Office1
instance has an property with the name area that relates to the Area1
instance. Two other relationships are part of the property named enclosedBy
and refer to WallB and WallC respectively. This property, as can be found
below in the definition of the Feature type Room, has a cardinality of 0 or
more.
The XML-Schema that provides the declarations of the Feature types used in
the above model, is shown in table 3. In line 4 the namespace is declared that
will be used by the schema in this document; in line 7 it is also made the
default namespace for this document. The Area Feature type is declared
starting from line 13. After some descriptive data, the content of this type is
declared, on line 22 and further, as a simple type that is inherited from float,
but allows only non-negative values. The default value is set to 0.

On line 43 starts the declaration of the Feature type Room, which is a
subtype of the type Space, adding the enclosedBy property to its definition.
This property represents the association of the room with its enclosing walls.
It has a minimum occurrence of 0 walls and an unbounded maximum.

Feature types are declared as types in the XML-Schema. For the purpose
of instantiation, elements are declared for each of the Feature types, as in
lines 54-56.

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

TABLE 3. XML-Schema document declaring Feature types.

 XML-Schema document declaring Feature types
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

<?xml version="1.0" encoding="UTF-8"?>
<!-- author: Design Systems group (TU/e) -->
<xsd:schema
 targetNamespace="http://www.ds.arch.tue.nl/ftrlib/arch/spatial"
 xmlns:ftrbase="http://www.ds.arch.tue.nl/ftrbase"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns="http://www.ds.arch.tue.nl/ftrlib/arch/spatial"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:import
 namespace="http://www.ds.arch.tue.nl/ftrbase"
 schemaLocation="FtrBase.xsd"/>
 <xsd:complexType name="Area">
 <xsd:annotation>
 <xsd:documentation>
 <ftrbase:Author>Joran Jessurun</ftrbase:Author>
 This Feature type defines a spatial area.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="ftrbase:FtrBase">
 <xsd:attribute name="value" use="default" value="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:float">
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Space">
 <xsd:complexContent>
 <xsd:extension base="ftrbase:FtrBase">
 <xsd:sequence>
 <xsd:element name="area" type="ftrbase:Role"
 minOccurs="0" ftrbase:roletype="spec"
 ftrbase:ftrtype="Area"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Room">
 <xsd:complexContent>
 <xsd:extension base="Space">
 <xsd:sequence>
 <xsd:element name="enclosedBy" type="ftrbase:Role"
 minOccurs="0" maxOccurs="unbounded"
 ftrbase:roletype="assoc" ftrbase:ftrtype="Wall"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Area" type="Area"/>
 <xsd:element name="Space" type="Space"/>
 <xsd:element name="Room" type="Room"/>
<!-- -->
</xsd:schema>

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

4.1 INSTANCE LEVEL RELATIONSHIPS

One of the major characteristics of the Feature-Based Modelling approach is
that flexibility is achieved in the model by allowing a designer to add
relationships to Features in the model that are not defined in the
corresponding Feature types. In the XML instance document in table 2, an
example of such an instance level relationship is the property
numberOfWorkplaces that is added to the Room Office1 in line 15. This
element adds a relationship from the Office1 instance to an instance named
NoDesksInOffice1, which in the complete model is an instance of a Feature
type for non-negative integers.
 <numberOfWorkplaces xmlns="" ftrbase:ref=”NoDesksInOffice1”/>

5. Implementation in prototype design systems

The introduction of XML-Schema as the basis for Feature management in
the VR-DIS system, has a led to an updated architecture for this system. The
central module of the system was and still is implemented using the
Microsoft’s Common Object Model (COM). In the previous version, the
central module consisted of a Feature Management Core that provided a
COM interface to the underlying OODB system (see figure 2).

In the new version, the COM interface is maintained, but now provides
access to the Document Object Model (DOM). The Document Object Model
[W3C-DOM 2001] is a platform- and language-neutral interface that will
allow programs and scripts to dynamically access and update the content,
structure and style of documents. The DOM is specified in several levels:
from accessing the basic structure of XML and HTML documents to the use
of content models (such as DTDs and Schemas). The Feature Management
Core implements the Feature Management Object Model that can be
compared to the DOM and is also defined as platform- and language-neutral
interface (see figure 3).

On top of the DOM, a Feature Management Schema is declared that
imposes additional constraints on elements and attributes in XML-Schema
that are required for proper declaration and instantiation of Feature types.
Application level modules can access the central Feature Management
Module in two manners. The first and easiest is by using the Feature
Management Object Model provided by the Feature Management Core. The
second type of access is directly to the Document Object Model through the
Feature Management Schema. This second way of accessing the model is
more direct, but requires that the additional constraints in the Feature

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

Management Schema are observed by the application. In the Feature
Management Core, this is taken care of for the application.

Figure 3. VR-DIS: XML-Schema based system implementation.

6. Conclusions

The authors like to interpret the similarities of the approach developed in the
FBM framework and the activities in the XML community, especially the
XML-Schema activity, as a confirmation of the directions taken in this
research project. The wish to provide users with a flexible technology that
allows them to express semantically rich typologies, as recognised in the
work of the authors, appears to form the basis for the XML developments as
well.

Using the XML-Schema technology in the FBM framework solves a
number of issues that were of concern in the VR-DIS project. (1) The open
XML standard forms a better and more independent interface to data storage
of the information system. (2) Namespaces, when used with URI’s with the
HTTP protocol in XML-Schema, provide the possibility to retrieve Feature
type libraries through Internet. (3) The development of the FBM framework
is now based on common technology, which enhances the flexibility and
speed of development. (4) Feature models, now stored in the form of XML
instance documents, can be used also by applications that are not part of the
VR-DIS project, as long as they are XML-enabled. For example cost-
calculation systems can access the models easily through either DOM or

 VR User
Interface

User

Feature
data

Type B
Modules

Feature Management Core

DOM / XML / XML-Schema

Type A
Modules

Feature Management Schema Feature
Management
Module

Published as: van Leeuwen, Jos P., and A.J. Jessurun. 2001. “XML for Flexibility and Extensibility of
Design Information Models.” In: Proceedings of CAADRIA 2001, Sydney, Australia: 19 – 21 April 2001.

other ways of reading XML instance documents. (5) In terms of
dissemination of research, the usage of a common technology to define the
meta-level of the FBM framework (i.e. the language used to define types and
instances), is much preferred over the previous approach in which yet
another syntax was developed for this purpose.

However, the XML-Schema approach does not solve any of the problems
that relate to the interpretation of semantics of Feature libraries and Feature
models. Also the issues of standardisation of common architectural design
knowledge, as pointed out in previous publications on this research project,
are not addressed with the XML approach.

References

Achten H.H., B. de Vries, and J.P. van Leeuwen: 2000, Computational Design Research: The
VR-DIS Research Programme, in H.H. Achten, B. de Vries, and J. Hennessey (eds.),
Design Research in the Netherlands 2000, Eindhoven University of Technology.

Ekholm, A. and S. Fridqvist: 1998, A Dynamic Information System for Design Applied to the
Construction Context, in The Life-Cycle of Construcion IT, proceedings of the CIB W78
workshop, Stockholm: Royal Institute of Technology.

Fridqvist, S.: 2000, Property-Oriented Information Systems for Design, PhD thesis, Lund
Institute of Technology.

Hendricx, A.: 2000, A Core Object Model for Architectural Design, PhD thesis, Katholieke
Universiteit Leuven.

van Leeuwen, J.P.: 1999, Modelling Architectural Design Information by Features, an
approach to dynamic product modelling for application in architectural design, PhD
thesis, Eindhoven University of Technology (http://www.ds.arch.tue.nl/jos/thesis).

van Leeuwen, J.P. and B. de Vries (2000). Modelling with Features and the formalisation of
early design knowledge, in Gonçalves et al. (eds.), Product and Process Modelling in
Building and Construction, Proceedings ECPPM2000 Lisbon, Rotterdam: Balkema.

Liebich, Th. and A. Yoshinobu: 2000, Exchanging IFC content information using the XML
protocol, in Gonçalves et al. (eds.), Product and Process Modelling in Building and
Construction, Proceedings ECPPM2000 Lisbon, Rotterdam: Balkema.

O’Brien, M.J. and N. Al-Biqami: 2000, XML, Flexibility and Systems Integration, in
Gudnason (ed.), Construction Information Technology, Proceedings of CIT2000
Reykjavik: Icelandic Building Research Institute.

W3C-XML: 1998, Extensible Markup Language (XML) 1.0, World Wide Web Consortium
Recommendation, http://www.w3.org/TR/REC-xml/

W3C-Namespaces: 1999, Namespaces in XML, World Wide Web Consortium
Recommendation, http://www.w3.org/TR/REC-xml-names/

W3C-XML-Schema: 2000, XML Schema, Part 0: Primer, World Wide Web Consortium
Candidate Recommendation, http://www.w3.org/TR/xmlschema-0/ (see also Part 1:
Structures and Part 2: Datatypes).

W3C-DOM: 2001, Document Object Model (DOM), World Wide Web Consortium
Recommendations and working drafts, http://www.w3.org/DOM/

