
Published as: van Leeuwen, J.P., and A.J. Jessurun. 2001. ‘Added Value of XML for
CAAD’. In: Proceedings of AVOCAAD 2001, Brussels, Belgium, April 5-7, 2001.

ADDED VALUE OF XML FOR CAAD

J.P. VAN LEEUWEN AND A.J. JESSURUN
Eindhoven University of Technology, The Netherlands
Faculty of Building and Architecture, Design Systems Group
http://www.ds.arch.tue.nl

Abstract. In early stages of the design process, designers’ activities
concentrate on trying to understand the design problem and to identify
the concepts that make up design solutions. Information is dealt with
in these early stages in a very flexible manner that asks for flexible
computer support. XML offers much of this flexibility. This paper
discusses how XML technology can be used to develop computer
support for creative architectural design.

1. Information Systems for Design Support

The way information is dealt with during design, especially in early stages of
design, imposes specific requirements on computer support for design. The
nature of these requirements and possible solutions for the development of
computer support for early design has been the topic of research by
[Eastman et al. 1995], [Ekholm and Fridqvist 1998], [Fridqvist 2000], and
[Hendricx 2000]. In the VR-DIS1 research programme at Eindhoven
University of Technology, one of the major targets is to support early design
in a VR environment [Achten, de Vries, and van Leeuwen 2000]. The
underlying Design Information System for this environment supports the
dynamic way of dealing with information that is characteristic for early
conceptual design.

The rationale of design in these early stages is not static; the
identification of design concepts is an important aspect of the early design
process. Design rules are being established, sometimes followed, sometimes
violated in the search for creative solutions to the design problem (which
itself is not static either). Computer support for this dynamic process cannot
build on static data-definitions and predetermined classifications of design

1 VR-DIS: Virtual Reality – Design Information Systems

2 J.P. VAN LEEUWEN AND A.J. JESSURUN

elements. Defining the concepts and typologies is an essential part of the
design process; computer aided design therefore must involve in supporting
this process of concept definition.

A number of research projects in the VR-DIS programme concentrates on
this form of computer aided design. The aspect of human-machine interfaces
to complex, abstract design data is addressed by [Coomans and van Leeuwen
2001]. The development of design methodologies and knowledge
representation based on these innovative modelling techniques are discussed
in [Achten and van Leeuwen 2001]. This paper concentrates on the technical
aspects of the information modelling approach.

2. XML-Schema as a Conceptual Modelling Language

eXtensible Markup Language, abbreviated XML, is a restricted form of
SGML that can be used to define the logical structure in documents and
constraints on the contents of documents [W3C-XML 1998]. XML provides
a syntax and generic mechanisms to structure data in documents. Documents
that are structured in XML basically have a tree-like structure but may also
contain references; XML is similar to, but syntactically richer than HTML.
Any kind of data may be contained in an XML document, as long as it is
structured in elements (tags). Attributes can be added to the elements to
further provide information about their content, for example:

<space type=”office” area=”23.5”>Room 4.07</space>

In this example, space is an element with attributes type and area. The
contents of the space element is Room 4.07. An XML document is well-
formed if its contents complies with the syntax defined for XML. This
means that a well-formed XML document has some kind of logical, tree-like
structure, that is formatted using the XML syntax of elements, attributes, etc.
An XML document may also be valid if its contents complies with the
constraints defined for that particular type of document. Document types are
defined in so-called DTD’s (Document Type Declarations). Validation of an
XML document with its DTD involves checking whether the right elements
and attributes are used in the document. It provides a much more strict level
of syntax checking than the XML well-formedness check does. A
disadvantage of the DTD approach, however, is that DTD’s are written in a
different language than XML, which is not very practical. Moreover, the
DTD language provides only a few data types.

As an alternative to DTD’s, XML-Schema [W3C-XML-Schema 2000]
has been developed to define the logical structure of XML documents. Just
like a DTD, an XML-Schema defines logical structures and constraints on
data contents that can be used by XML documents. An XML-Schema is

 ADDED VALUE OF XML FOR CAAD 3

itself written in XML. The underlying vehicle for the functioning of XML-
Schema is XML namespaces [W3C-Namespaces 1999]. A namespace
defines a scope for elements and attributes in an XML document. In addition
to what can be declared using a DTD, XML-Schema provides a larger set of
data types and allows inheritance in types. Inheritance makes it possible to
declare restrictions and extensions of types.

3. Conceptual Modelling for Design

The abilities offered by XML-Schema for extending a conceptual model
with new typologies to be used in XML documents, answer remarkably well
the needs of flexible information modelling for design support. In the VR-
DIS programme, these needs are addressed by a technique called Feature-
Based Modelling (FBM). This technique has its origins in mechanical
engineering, but has been adapted to the context and requirements of
architectural design by [van Leeuwen 1999]. The basis of this technique is
object orientation, but additional functionality provides a high level of
flexibility and extensibility to the modelling environment. Objects in this
approach are called Features, or Feature instances, classes of objects are
called Feature types. The dynamics of the approach are manifested in
extensibility of the set of Feature types and the flexibility of the Feature
instances of these types.

3.1 EXTENSIBILITY

Extensibility involves giving the designer the tools to define new Feature
types that represent design concepts. Compared to pure object-oriented
systems, this aspect allows the user of the system to have influence on the
class definitions, defining new classes from scratch or deriving new classes
from existing ones [van Leeuwen and de Vries 2000].

3.2 FLEXIBILITY

Flexibility is provided by the Feature-based approach in a number of ways.
First of all, relationships in the information model are based on references,
which ensures a maximum of flexibility concerning sharing of information
between elements of the model. Both in the definitions of Feature types and
in the composition of Feature instances, all relationships are defined as
references to types or instances. For example, characteristics such as colour
and durability are not properties owned by building elements, but are
properties referenced by building elements. This makes it possible for
elements to share properties, which is very similar to the way we speak

4 J.P. VAN LEEUWEN AND A.J. JESSURUN

about these elements: the doors in the building have the colour blue (many
doors, one colour).

A second aspect of flexibility is that designers can add relationships to
Feature instances that have not been defined in the corresponding Feature
types. This provides a means to model ad-hoc design information without
the need to first formalise a new typology or modify an existing one. Again,
this is much like the way we think about objects around is: this element is a
roof, but, in addition to my general concept of a roof, this one has solar
panels attached to it. The relationship between the roof and the panels is not
defined at the type level, but added at the instance level. Compared to pure
object-oriented approaches, this kind of flexibility allows the user to supply
properties to an object that are not defined in its class.

4. XML for Design Concept Formalisation

4.1 THE FBM FRAMEWORK

The FBM framework comprises three levels of information (see figure 1).
The bottom level contains actual design data for particular design cases. At
this level, a model of Feature instances forms a network of design
information. The Feature instances are defined by their corresponding
Feature types, in the middle level. Here, Feature type libraries represent
design knowledge in the form of formalised concepts. These libraries can be
either standardised or managed by the individual designer. The flexibility
and extensibility of the framework are manifested in the top layer, the so-
called meta-layer, which defines the format for both the Feature types layer
and the Feature instances layer. The meta-layer contains the structures and
rules that determine the way Feature types are defined and the way Feature
instances are modelled.

Figure 1. Framework for Design by Features

Meta-Layer
classes of Feature Types and
classes of Feature Instances

Feature Types
formalised design concepts

Feature Instances
composition of a design model

defines format of

instantiated into

 ADDED VALUE OF XML FOR CAAD 5

For the definition of Feature types and the description of Feature
instances, a C like language has been developed. The FBM framework is
implemented as an API (Application Programming Interface) providing a
data management environment for the development of design system
prototypes. The previous implementation of the API, which was based on an
object oriented database, is now being redeveloped on the basis of XML-
Schema technology.

4.1 XML-SCHEMA IN THE FBM FRAMEWORK

The designed functionality of the FBM framework and of XML-Schema
have some important aspects in common. Both the FBM framework and
XML-Schema provide a syntax to declare logical structures of data. The
FBM framework provides a language to define libraries of Feature types;
XML-Schema defines a syntax (actually an XML namespace) to declare data
types and structures of elements to be used in XML documents. The FBM
framework provides a language for the description of design model data in
Feature instances that are created from Feature types; in the XML-Schema
approach, data is provided in XML, with reference to the appropriate XML-
Schema.

Figure 2. Similarity of the XML-Schema functionality
with the FBM framework

Both the FBM framework and XML-Schema offer extensibility of the
conceptual model, i.e. the set of typologies to be used in modelling. In the
FBM framework this is done by allowing the user to build up Feature type
libraries; in XML-Schema, the user can add data-types and element
definitions to the schema.

The mechanism of namespaces makes it possible to add elements and
attributes to a document’s structure that are not declared in the XML-
Schema. The schema can be declared to allow the addition of these external
constructs to the document; this does not violate the rules of XML well-

XML-Schema Namespace
www.w3.org/2000/10/XMLSchema

XML data types and
elements

XML document instances

defines syntax for

instantiated into

6 J.P. VAN LEEUWEN AND A.J. JESSURUN

formedness. Moreover, additional elements and attributes may be declared in
other XML-Schemas that are referred by the document as well. This
compares to the ability of the FBM framework to model relationships
between Feature instance that are not defined by the Feature types. These are
called instance-level relationships and are used to model ad-hoc properties of
a particular design element that are not an considered to be a part of the
underlying design concept.

Sharing of Feature type libraries through Internet requires unique
identification of libraries and types. Namespaces in XML, when used with
Uniform Resource Identifiers, provide a mechanism to do this in a human
interpretable manner.

5. Information Modelling with XML-Schema

In the XML-Schema approach, Feature types are defined as elements in
XML-Schema. Instantiation of Feature types into Feature instances is done
in XML instance documents, by writing elements as defined in the XML-
Schema. An incomplete extract of a small Feature model with instances is
the XML instance document shown in table 1.

TABLE 1. XML instance document containing a Feature model.

 XML instance document containing a Feature model
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<?xml version="1.0" encoding="UTF-8"?>
<!-- author: Design Systems group (TU/e) -->
<ftrbase:Model
 xmlns:ftrbase="http://www.ds.arch.tue.nl/ftrbase"
 xmlns:spatial="http://www.ds.arch.tue.nl/ftrlib/arch/spatial"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 name="Offices">
 <spatial:Area name="Area1" value="29.7"/>
 <spatial:Room name="Office1">
 <ftrbase:Author>Joran</ftrbase:Author>
 <ftrbase:Description>Room 4.14</ftrbase:Description>
 <area ref="Area1"/>
 <enclosedBy ref="WallB" index="1"/>
 <enclosedBy ref="WallC" index="2"/>
 <numberOfWorkplaces xmlns="" ftrbase:ref=”NoDesksInOffice1”/>
 </spatial:Room>
 <spatial:Wall name="WallB">
 <ftrbase:Author>Joran</ftrbase:Author>
 <element ref="ElementB1" index="1"/>
 <element ref="ElementB2" index="2"/>
 </spatial:Wall>
<!-- -->
</ftrbase:Model>

In line 4 of this document, a namespace is declared that defines a number

of elements and attributes that form a meta-level for the definition of Feature

 ADDED VALUE OF XML FOR CAAD 7

types and instances, such as the Model element used on line 3. Line 5
declares a namespace for a library of Feature types representing spatial
concepts, such as Area and Room.

The first Feature instance, Area1, is of the Feature type Area and has a
value of 29.7. The used Feature types are explained below. The Office1
instance has a property with the name area that relates to the Area1 instance.
Two other relationships are part of the property named enclosedBy and refer
to WallB and WallC respectively. This property, as can be found below in
the definition of the Feature type Room, has a cardinality of 0 or more.

The XML-Schema that provides the declarations of the Feature types
used in the above model, is shown in table 2. In line 4 the namespace is
declared that will be used by the schema in this document; in line 7 it is also
made the default namespace for this document. The Area Feature type is
declared starting from line 13. After some descriptive data, the content of
this type is declared, on line 22 and further, as a simple type that is inherited
from float, but allows only non-negative values. The default value is set to 0.

On line 43 starts the declaration of the Feature type Room, which is a
subtype of the type Space, adding the enclosedBy property to its definition.
This property represents the association of the room with its enclosing walls.
It has a minimum occurrence of 0 walls and an unbounded maximum.

Feature types are declared as types in the XML-Schema. For the purpose
of instantiation, elements are declared for each of the Feature types, as in
lines 54-56.

TABLE 2. XML-Schema document declaring Feature types.

 XML-Schema document declaring Feature types
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<?xml version="1.0" encoding="UTF-8"?>
<!-- author: Design Systems group (TU/e) -->
<xsd:schema
 targetNamespace="http://www.ds.arch.tue.nl/ftrlib/arch/spatial"
 xmlns:ftrbase="http://www.ds.arch.tue.nl/ftrbase"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns="http://www.ds.arch.tue.nl/ftrlib/arch/spatial"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:import
 namespace="http://www.ds.arch.tue.nl/ftrbase"
 schemaLocation="FtrBase.xsd"/>
 <xsd:complexType name="Area">
 <xsd:annotation>
 <xsd:documentation>
 <ftrbase:Author>Joran Jessurun</ftrbase:Author>
 This Feature type defines a spatial area.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="ftrbase:FtrBase">
 <xsd:attribute name="value" use="default" value="0">
 <xsd:simpleType>

8 J.P. VAN LEEUWEN AND A.J. JESSURUN

 XML-Schema document declaring Feature types
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 <xsd:restriction base="xsd:float">
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Space">
 <xsd:complexContent>
 <xsd:extension base="ftrbase:FtrBase">
 <xsd:sequence>
 <xsd:element name="area" type="ftrbase:Role"
 minOccurs="0" ftrbase:roletype="spec"
 ftrbase:ftrtype="Area"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Room">
 <xsd:complexContent>
 <xsd:extension base="Space">
 <xsd:sequence>
 <xsd:element name="enclosedBy" type="ftrbase:Role"
 minOccurs="0" maxOccurs="unbounded"
 ftrbase:roletype="assoc" ftrbase:ftrtype="Wall"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Area" type="Area"/>
 <xsd:element name="Space" type="Space"/>
 <xsd:element name="Room" type="Room"/>
<!-- -->
</xsd:schema>

6. Implementation in the VR-DIS programme

The introduction of XML-Schema as the basis for Feature management in
the VR-DIS system, has led to an updated architecture for this system. The
central module of the system is implemented using Microsoft’s Common
Object Model (COM). Using XML technology, the COM interface provides
access to the Document Object Model (DOM). The Document Object Model
[W3C-DOM 2001] is a platform- and language-neutral interface that allows
programs and scripts to dynamically access and update the content, structure,
and style of documents. The Feature Management Core implements the
Feature Management Object Model that can be compared to the DOM and is
also defined as platform- and language-neutral interface (see figure 3).

On top of the DOM, a Feature Management Schema is declared that
imposes additional constraints on elements and attributes in XML-Schema
that are required for proper declaration and instantiation of Feature types.

 ADDED VALUE OF XML FOR CAAD 9

Application level modules can access the central Feature Management
Module in two manners. The first and easiest is by using the Feature
Management Object Model provided by the Feature Management Core. The
second type of access is directly to the Document Object Model through the
Feature Management Schema. This second way of accessing the model is
more direct, but requires that the additional constraints in the Feature
Management Schema are observed by the application. In the Feature
Management Core, this is taken care of for the application.

Figure 3. VR-DIS: XML-Schema based system implementation.

7. Conclusions

The similarities of the approach developed in the FBM framework and the
activities in the XML community, especially the XML-Schema activity, can
be interpreted as a confirmation of the directions taken in this research
project. The wish to provide users with a flexible technology that allows
them to express semantically rich typologies, as recognised in the work of
the authors, appears to form the basis for the XML developments as well.

Using the XML-Schema technology in the FBM framework solves a
number of issues that were of concern in the VR-DIS programme. (1) The
open XML standard forms a better and more independent interface to data
storage of the information system. (2) Namespaces, when used with URI’s
with the HTTP protocol in XML-Schema, provide the possibility to retrieve
Feature type libraries through Internet. (3) The development of the FBM
framework is now based on common technology, which enhances the
flexibility and speed of development. (4) Feature models, now stored in the

 VR User
Interface

User

Feature
data

Type B
Modules

Feature Management Core

DOM / XML / XML-Schema

Type A
Modules

Feature Management Schema Feature
Management
Module

10 J.P. VAN LEEUWEN AND A.J. JESSURUN

form of XML instance documents, can be used also by applications that are
not part of the VR-DIS programme, as long as they are XML-enabled. For
example cost-calculation systems can access the models easily through either
DOM or other ways of reading XML instance documents. (5) In terms of
dissemination of research, the usage of a common technology to define the
meta-level of the FBM framework (i.e. the language used to define types and
instances), is much preferred over the previous approach in which yet
another syntax was developed for this purpose.

References

Achten, H.H. and J.P. van Leeuwen: 2001, Scheming and Plotting Your Way into
Architectural Complexity, in These Proceedings of AVOCAAD 3rd International
Conference 2001.

Achten H.H., B. de Vries, and J.P. van Leeuwen: 2000, Computational Design Research: The
VR-DIS Research Programme, in H.H. Achten, B. de Vries, and J. Hennessey (eds.),
Design Research in the Netherlands 2000, Eindhoven University of Technology.

Coomans, M.K.D. and J.P. van Leeuwen: 2001, Abstract but Tangible, Complex but
Manageable, in These Proceedings of AVOCAAD 3rd International Conference 2001.

Eastman, C.M., T.S. Jeng, H.H. Assal, M.S. Cho, and S.C. Chase: 1995, EDM-2 Reference
Manual, Los Angeles: University of California in Los Angeles.

Ekholm, A. and S. Fridqvist: 1998, A Dynamic Information System for Design Applied to the
Construction Context, in The Life-Cycle of Construcion IT, proceedings of the CIB W78
workshop, Stockholm: Royal Institute of Technology.

Fridqvist, S.: 2000, Property-Oriented Information Systems for Design, PhD thesis, Lund
Institute of Technology.

Hendricx, A.: 2000, A Core Object Model for Architectural Design, PhD thesis, Katholieke
Universiteit Leuven.

van Leeuwen, J.P.: 1999, Modelling Architectural Design Information by Features, an
approach to dynamic product modelling for application in architectural design, PhD
thesis, Eindhoven University of Technology (http://www.ds.arch.tue.nl/jos/thesis).

van Leeuwen, J.P. and B. de Vries: 2000, Modelling with Features and the formalisation of
early design knowledge, in Gonçalves et al. (eds.), Product and Process Modelling in
Building and Construction, Proceedings ECPPM2000 Lisbon, Rotterdam: Balkema.

W3C-XML: 1998, Extensible Markup Language (XML) 1.0, World Wide Web Consortium
Recommendation, http://www.w3.org/TR/REC-xml/

W3C-Namespaces: 1999, Namespaces in XML, World Wide Web Consortium
Recommendation, http://www.w3.org/TR/REC-xml-names/

W3C-XML-Schema: 2000, XML Schema, Part 0: Primer, World Wide Web Consortium
Candidate Recommendation, http://www.w3.org/TR/xmlschema-0/ (see also Part 1:
Structures and Part 2: Datatypes).

W3C-DOM: 2001, Document Object Model (DOM), World Wide Web Consortium
Recommendations and working drafts, http://www.w3.org/DOM/

