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ABSTRACT 
 
For support of creativity in architectural design, design systems must be provided with information 
models that are flexible enough to follow the dynamic way of designers in handling early design 
information. This paper discusses a framework for information modelling using Features that answers 
this need. One of the characteristics of the framework is that designers can define the formalisation of 
their own design concepts into types of Features. The definition of these Feature Types can be done in 
different manners; three scenarios for this procedure are presented and discussed. 

1. SUPPORTING CREATIVITY IN DESIGN 

1.1 Dynamic nature of Design 

Architectural design can generally be regarded as a process of problem solving. These 
problems, however, are normally ill-defined, or ‘wicked’ as (Cross 1984) 
characterises them. These wicked design problems require a very dynamic behaviour 
from designers, not only in searching for design solutions, but also in searching for 
the design problem (Coyne at al. 1991). Tasks such as analysis, synthesis, and 
evaluation do not occur in neat cycles, but designers tend to switch in a rather ad hoc 
manner between the different stages and tasks in design and often perform these tasks 
concurrently (Lawson 1990). 

Clearly, information is not treated as static data during such a dynamic design 
process. Content and structure of design information is invariably subject to change, 
which places a significant requirement on the development of computer support for 
design tasks: formal information models for design must be as flexible and dynamic 
as the design process itself. They must evolve, as design evolves. The evolution of 
design information models has been subject of research by (Eastman et al. 1995) and 
at the Design Systems group at Eindhoven University of Technology (van Leeuwen et 
al. 1995, 1997, 1998, 1999; van Leeuwen 1999). Similar issues are addressed also in 
the work by (Ekholm and Fridqvist 1997, 1999) and (Hendricx 2000). 



The following conclusions can be drawn when considering the dynamic nature of 
design: 
 
1. Design is a process of problem-solving and often concerns problems that are 

initially not well-structured; 
2. Information related to design problems and solutions is dealt with in different 

ways, related to the approach of solving the design problem. Design involves 
creativity through combination of these approaches: 
a) Selection of an existing solution to a similar design problem involves 

matching information related to the problem and the existing solutions. 
b) Creating a new solution to the design problem involves generating new 

information that defines the solution to the problem. 
c) Combining existing information in order to find new relations or structures in 

concepts and ideas that lead to design solutions involves analysis, re-
interpretation, and re-structuring of existing design information. 

d) Altering the design-problem in order to find a suitable solution means 
analysis, re-interpretation, and re-structuring of the information related to the 
problem, possibly even adding to, or dropping parts of the design problem. 

3. Activities in design do not take place in a predictable order, the information dealt 
with in design activities cannot be foreseen: the content and structure of required 
information or generated information cannot be presupposed; 

4. Individual designers, as well as the sector of design and the Building & 
Construction industry as a whole, are under constant development, with new 
knowledge, concepts, techniques, methods, products, materials, and styles 
emerging. Conceptual information models  must evolve along with this 
development, in order to accurately represent the changing domain of design and 
B&C. 

 
The above conclusions lead to the statement of new requirements on information 
models that are to support the dynamic nature of design. These requirements are 
denoted by the terms extensibility and flexibility, both ensuring the possibility for an 
information model to evolve along with the development of a design. 

1.2 Modelling with Features 

The Feature-Based Modelling technology (FBM) has been developed initially in the 
area of mechanical engineering (Shah and Mäntylä 1995). As in the approach of 
Product Modelling (PM), FBM has started from the objective to generate semantically 
rich models of engineering data. Yet, the approach followed in FBM is different. PM 
approaches have developed conceptual models that represent the data structures to be 
used by their applications. These conceptual models largely aim at the later stages of 
design of the product, and are used to communicate the as-designed information 
between the various participants. Historically, the starting-point in FBM has been 
formed by geometry models, from which it was attempted to recognise the semantics 
of design. These semantics were then modelled using so-called Features. However, 



because much of the design information available during design cannot be recognised 
from geometric models, the design-by-Features approach was developed, where the 
semantically rich Features formed the primitives in building up the geometry. 
Combinations of both design-by-Features and Feature recognition joined the 
advantages of both approaches (DeMartino et al. 1994; Ovtcharova and Vieira 1995). 
 
The result of this historical development from Feature recognition to design-by-
Features, and eventually to the combination of both, has been that models consisting 
of Features are not, as in most PM approaches, predefined in large data structures. 
Features are defined as relatively autonomous entities of information that are given a 
position and relationships in the model only at design-time, not at the time of 
development of conceptual models. Also, the collection of Features available to 
designers is not assumed to be complete: designers can define and add their own 
Feature types to their collection of design tools. These characteristics of Feature-
Based Modelling are very appealing to the dynamic architectural designer who is 
struggling with ill-defined design problems at the early stages of design. 

Research on a Feature-Based Modelling approach for architectural design has led 
to the development of a theoretical framework with the following characteristics (van 
Leeuwen and Wagter 1997; van Leeuwen 1999). 
 
1. Features are used to represent the semantics of a building design; 
2. Features are the formal definition of characteristics or concepts of design; 
3. Features are applied to multiple levels of abstraction of modelling the design (as 

opposed to the original FBM area, where Features are used only to describe the 
level of parts); 

4. Features can be Generic Features, shared by the domain of architectural design, or 
Specific Features, which are defined for a particular view, e.g. a particular design 
style; 

5. Types of Features can be defined by designers as the need to formalise a design 
concept arises; 

6. Features form interrelated structures in a Feature model, using the relationships 
that are defined at the level of Feature Types, or by adding occasional 
relationships at the instance level. 

7. Libraries of Feature Types represent bodies of domain knowledge. These libraries 
can also include instantiated data, mixed with the typological definitions. 

 
Of these characteristics of the Features framework, issue number 5, Types of Features 
can be defined by designers, is discussed in detail in the remainder of this paper. 



2. STRATEGIES FOR FEATURE TYPE DEFINITION 

2.1 Identification of a concept 

Defining a Feature Type follows the decision to formalise a design concept. Therefore 
the first problem to address in Feature Type definition is: how to recognise and 
identify a concept? Two different points of view from which to approach this problem 
are discussed. The first point of view discusses how concepts can be acquired from 
sources of design knowledge. The second point of view presents the most common 
approaches in OO Analysis to classify a given knowledge domain. Both points of 
view must be considered in the processes of identifying concepts for the formalisation 
of design knowledge. 

2.1.1 Design domain knowledge and vocabulary 
The first point of view in the quest for concepts is taken from the body of knowledge 
in the domain of design. This knowledge, particularly in the complex discipline of 
architectural design, is not always readily available or easily accessible. Certain 
concepts in this body of knowledge are scientifically defined, such as the SI units 
(meter, second, Kelvin, Volt, etc.). These often are rather elementary concepts, which 
is to say that, in terms of information structure, they do not bare much complexity. 
Other, perhaps more complex, concepts may be defined in a less exact manner, but 
still be well conceived, such as industrial products of which all characteristics are 
known and available from manufacturers. The terminology used for these products 
and their characteristics forms the basis for defining the Feature Types that are to 
represent this kind of concept. A third kind of concept is perhaps the most important 
in design, especially in early stages. These concepts form the core of architectural 
design theory and methods. They represent elements of design that can be either 
concrete or abstract, tangible or intangible, exact or indeterminate. For this kind of 
concept, the vocabulary of the design domain may be a suitable starting-point for their 
formal definition into Feature Types. This vocabulary, in architecture, is not formally 
defined either, but many terms have traditional meanings that are generally accepted. 

The first consideration in the process of identifying a concept should therefore be 
whether a term exists that covers the potential concept. Terms are normally used to 
indicate the names of, e.g., systems, structures, products, materials, functions, 
organisational units, et cetera. An analysis of the way the term is used should be 
projected onto the concept being identified and reveal if the term actually represents 
that concept or not. If an existing, accepted term cannot be found, there are four 
possible consequences: 
 
– The potential concept needs some adjustment to fit a term that is reasonably close 

to describing the concept; 
– The potential concept covers a combination of multiple terms; 
– The potential concept introduces a new term in the design vocabulary; 
– Any combination of the three options above. 



 
Whether or not new terminology should be defined involves a trade-off between 
aspects such as: 
 
– Acceptability of the concept in the design discipline. This may be an important 

issue when the concept serves, e.g., purposes of standardisation, regulation, or 
information exchange. 

– Desired or allowed level of ambiguity of the defined concept. Because new 
terminology, as opposed to traditional terminology, is not naturally known, its 
introduction may result in various interpretations of the term, which have to be 
verified against the concept’s definition. Any ambiguity in the formal definition of 
the concept will then allow variance in the interpretation of the term. 

– Completeness and exactness of the definition. As a result of the previous aspect, 
the completeness and exactness of the definition of the concept cannot rely on 
knowledge inherently related to traditionally known terminology. 

– Uniqueness of the concept in relation to existing vocabulary. Using new 
terminology allows a concept to be defined distinctly and independently from 
implicit meanings related to existing terminology. This can be a prerequisite when 
the uniqueness of the concept is to be stressed or when distinction from other 
concepts is necessary. 

 
Closely related to design domain knowledge are the areas of design methodology and 
design theory. Design methodology, according to (Roozenburg and Eekels 1995), is 
the science that studies the structure, methods, and rules of design. Design 
methodologies are either developed while focusing on the design process as a whole, 
or intended for specific domains or phases in design. An example of the latter, given 
by Roozenburg and Eekels, is the morphological method, which relates characteristics 
and functions of a design with the variant components for that design in an array 
containing all conceivable solutions. For the identification of design concepts, it is 
interesting to look at the subjects used in specific design methods, especially those 
subjects that form an intrinsic part of the method. 

A recently developed methodology for architectural design is presented as Generic 
Representations by (Achten 1997). This methodology involves an approach to the 
identification of design content in architectural graphic representations. Its hypothesis 
is that graphic representations made during the design process imply the design 
decisions that are made. The research shows how it is possible to extract such design 
decisions from the graphic representations, by inferring the declarative knowledge 
embedded in these representations. The methodology proposed by Achten involves 
using generic representations, and the design knowledge acquired from them, as a 
model for procedural decision making in design. 

Many design methods, like the example given above, develop design aids, such as 
archetypes, design patterns, proportional or other measuring systems, rules for design 
schemata for instance for floor plans and elevations, and so on. These tools can be 
regarded as the design concepts that are applied in the context of the design situation 
at hand, using established procedures from the design method. The definitions of 



these concepts are not always clear and explicit but may involve implicit knowledge 
about the usage and meaning of the concepts themselves and of the procedures for 
using them in design. The formalisation of this kind of concept into a Feature Type 
requires that all relevant knowledge be made explicit, which may involve 
formalisation of other concepts and knowledge about concepts that have not been 
identified explicitly before. Classification strategies will help to identify these. 

2.1.2 OOA strategies for classification 
The term classification in Object Oriented Analysis refers to the task of the software 
engineer to identify classes of objects in the domain for which software is to be 
developed. These classes then form the backbone for the design of procedures and 
data storage of that software. According to (Sowa 1984) there have only been three 
general approaches to classification: 
 
1. Classical categorisation. 

The criteria for sameness of objects is formed by their properties: objects that have 
one or more properties in common belong to a category. 

2. Conceptual clustering. 
First, the conceptual descriptions of classes are formulated, then objects are 
classified according to these classes using a ‘best fit’ method. 

3. Prototype theory, or classification by example. 
The class is not defined conceptually, but by means of an example: a prototype. 
Objects are member of the class only if they sufficiently resemble the prototype. 

 
In practice of Object Oriented Analysis, these approaches are combined and/or 
followed sequentially. Classification forms the main starting-point not only for the 
identification but also for the design of object classes. It supports the determination of 
structures of classes and of the structure of data and behaviour of these classes. As 
such, these approaches to classification are valuable also during the definition of 
Feature Types. 

2.2 Decisions in Feature Type definition 

Definition of a Feature Type is a procedure that is very similar to the definition of 
object classes in OO approaches for which many strategies and checklists have been 
described, e.g. (Booch 1994). Aspects that need to be considered when defining a 
Feature Type are the following: 
 
– Bottom-up versus top-down 

A top-down approach allows the designer to represent the logical hierarchies that 
are found in the domain of architecture, whereas a bottom-up approach stimulates 
the re-usage of existing Feature Types. 

– Typical versus non-typical 
Is the information to be formalised typical for the concept, or does merely it 
concern a characteristic of a particular instance of that concept? This has to do 



with the reusability of the concept: when too much information is included in the 
Feature Type, then the reusability of the concept will be less: perhaps some less 
common characteristics should not be defined as part the Feature Type, but 
modelled as instance level relationships for particular Feature Instances only. 

– Wide structures versus deep structures 
(Booch 1994, p. 140) discusses the subject of how to choose the inheritance 
relationships between classes of objects: deep inheritance trees tend to have 
classes that are less interdependent, but may not exploit all commonality; wide 
inheritance trees result in smaller individual classes, re-using other classes, but 
their complexity will be harder to understand. A similar problem exists with other 
relationships between classes, such as decomposition. 

– Presentation versus representation 
This concerns the distinction between how a concept is presented to the user, e.g. 
on screen, and what actually comprises the concept. The latter kind of information 
must be modelled and stored and is used to generate the data for presentation. 

– Choice of relationship: specialisation, decomposition, association, or 
specification 
For the definition of the relationships between Feature Types, these four 
relationships are available in the framework. Specialisation results in the 
definition of sub-types inheriting from super-types. The other three kinds of 
relationships are given a role name in the definition of a Feature Type by the 
designer. 

– Redundancy, completeness, and consistency 
Although modelling a design information structure should aim at minimal 
redundancy and maximal completeness and consistency, it must be realised that 
the optimal configuration of information does also rely on aspects like reusability 
and practicability. Especially these two aspects will often justify certain levels of 
redundancy to exist in a collection of Feature Types. The pursuit for completeness 
should always be considered in the context and purpose for which a Feature Type 
is to be used and in relation with the amount of information that is likely to be 
available at the time of modelling or that designers are willing to provide. From 
the point of view of information management, consistency should always be 
pursued, yet in creative design, inconsistency may, to a certain degree, be 
acceptable. Moreover, the option to be inconsistent in dealing with information 
during design is often considered an important factor in creative processes. 

2.3 Scenarios for Feature Type definition 

Three distinct situations are recognised in which Feature Type definition may be 
initiated. 
 
1. Feature Type definition from scratch. 
2. Feature Type definition from a prototype. 
3. Feature Type recognition. 



2.3.1 Feature Type definition from scratch 
The first situation in which Feature Type definition is initiated, is when a designer (or 
e.g. an organisation for standardisation) decides to formalise a concept that has not 
necessarily been modelled in terms of Features before. The formalisation of such a 
concept is started from scratch. For this approach, a procedure is described in the next 
few pages, that guides a designer through the various decisions to be made when 
defining a new Feature Type. This procedure leads to a selection of the appropriate 
class of Feature Type and assesses the definition of all its attributes, possibly resulting 
in the definition of other Feature Types or the instantiation of Feature Instances. 
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Figure 1. Diagram 1 of the procedure for Feature Type definition 

 
The figures 1 to 4 show the procedure for formalising a concept and defining a 
Feature Type. This procedure assumes that the concept has been identified by the 
designer. It comprises four diagrams that guide the designer through a number of 
decisions regarding the contents of the concept. Diagram 1 starts with the 



determination of the primary nature of the concept. It distinguishes procedural, 
geometric, and constraint concepts from all others. This distinction may lead to the 
definition of a Handler Feature Type, a Geometric Feature Type, or a Constraint 
Feature Type respectively. If none of these apply, one is to proceed with diagram 2 of 
the procedure. 

A Handler Feature Type requires the selection of the event that is to trigger the 
procedure defined by the handler. The parameters for this procedure need to be 
declared, meaning that the types are specified of the Features that can be passed as 
parameters to this procedure. The procedure itself must be defined, using one of the 
procedural languages made available by the design system. 
 
In case of a geometric nature of the concept, a Geometric Feature Type is defined. 
This type requires selection of the parametric geometry that it represents. The 
available kinds of parametric geometry depends on the geometry modelling engine 
that is integrated with the design system. The selected geometry provides the types of 
the parameters that must be provided by instances of the Geometric Feature Type, 
these parameters are given from within the context of the geometry modeller. The 
Geometric Feature Type further declares these parameters by providing the types of 
Features that can be passed as parameters. 

For Constraint Feature Types, the type of constraint needs to be indicated, which 
depends on the availability of constraint solvers in the design system. Once the 
constraint type is selected, the parameters required by this constraint are known and 
the Constraint Feature Type further declares these as the types of Features that can be 
passed. 

After the definition of any of the above Feature Types, there may be remaining 
aspects of the concept that have not yet been taken into account as parameters. If this 
is the case, the defined Feature Type is itself contained in a larger Feature Type, a 
Complex Feature Type, which must be defined next. First, the definition of the current 
Feature Type is finished by proceeding with diagram 4 of the procedure. After that, 
the definition of the containing Complex Feature Type can be started, which takes the 
Feature Type that has just been defined as its first attribute. 

Diagram 2 shows how to proceed when the concept does not lead to the definition 
of either Handler, Geometric, or Constraint Feature Type. First, all the attributes of 
the concept that represent data to be stored by Features of this type are listed. For each 
of these data-attributes, it is considered whether or not the attribute is relevant to the 
majority of occurrences of the concept. This is not necessarily a very clear decision, 
as the term ‘majority’ already indicates, more so because the possible occurrences of 
the concept may not come into view clearly at this time. Nevertheless, it should be 
questioned if the particular attribute really contributes to the concept’s significance, or 
if it is relevant only for the one occurrence of the concept that the designer has in 
mind. If the latter is the case, the attribute should not be defined a part of the Feature 
Type, but rather be modelled as a relationship at the level of the Feature Instances. 
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Figure 2. Diagram 2 of the procedure for Feature Type definition 

The number of data-attributes that are considered relevant for the Feature Type’s 
definition are counted. If this number is exactly one, then the base-type of this 
attribute must be determined. For attributes that represent a string, integer, real, or 
Boolean value, a Simple Feature Type is defined. For attributes that represent an 
identifier chosen from a given list of identifiers, an Enumeration Feature Type is 
defined. If neither of the above is the case, then the attribute itself represents a 
complex information structure, which must be represented by another Feature Type. 
Because this attribute is also the only data-attribute of the concept, it might in fact be 
that this attributes represents the concept itself. This is particularly true if no 
behaviour attributes are to be defined for this concept (see diagram 4), meaning that 
the concept exhibits no other characteristics than those represented by this attribute. 
Therefore, promoting this attribute to be regarded as the concept itself should be 
considered. If this is found to be the case, the procedure should be restarted, taking the 
notion of this attribute as the notion of the concept. Else, the procedure is continued at 
diagram 3, where the attribute will be the first and only attribute of a Complex Feature 
Type. 
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Figure 3. Diagram 3 of the procedure for Feature Type definition 

If the number of relevant data-attributes of the concept is greater than one, then a 
Complex Feature Type needs to be defined and the procedure is continued at diagram 
3. This is also the case if no attributes are found relevant. This may appear to be an 
odd case, formalising a concept that has no characteristics, yet the mere existence of a 
Feature Type with a given name may be sufficient to represent a particular design 
concept at certain stages in the development of a design or design theory. Perhaps 
later the content of the concept will become more clear and attributes will be added to 
the Feature Type that represents it. Also, behaviour attributes are yet to be dealt with, 
at diagram 4, which may give more meaning to the Feature Type being defined. 
Concepts with no data-attributes at all are modelled as Complex Feature Type that 
have no Components. 

If the procedure leads to diagram 3, this means that the concept must be 
represented by a Complex Feature Type. All data-attributes of the concept are to be 
defined as components of the Complex Feature Type, which are given a role name 
and role type (decomposition, association, or specification). For every relevant 
attribute of the concept the question must be answered whether or not the attribute has 
a constant value for all occurrences of this concept. If this is true, the Complex 



Feature Type will define an Instance Component, which is formed by a relationship to 
a Feature Instance. Possibly, this Feature Instance needs to be created. 

For attributes with a value that varies for the different occurrences of the concept, 
a Type Component is to be defined for the Complex Feature Type. This is a 
relationship to another Feature Type, which, during instantiation, results in one or 
more relationships to Feature Instances. Possibly, the related Feature Type does not 
yet exist and must be defined in a new procedure started at diagram 1. For Type 
Components, the cardinality, domain, and default value must be specified. 

After a component has been defined for each data-attribute of the concept, the 
procedure is continued at diagram 4 with the definition of the concept’s behaviour. 

The fourth and last diagram of the procedure for defining a Feature Type adds 
behaviour to the type’s definition by means of adding event handlers. First a list is 
made of all the behaviour-attributes of the concept being formalised. As with the data-
attributes in diagram 2, all those attributes are eliminated that bear relevance only to 
certain instances of the concept and are not significant to the intrinsic notion that the 
concept represents. 

For each of the remaining behaviour-attributes, the event is specified that will 
trigger the particular behaviour, the event handler, of the instances of this Feature 
Type. Next, it must be determined if the parameters that are to be assigned to the 
event handler will be assigned in a similar manner for all instances of the Feature 
Type, or if each instance will assign the parameters in their own particular manner. If 
the way of assigning parameters does not vary per instance, the parameter assignment 
can be done at the level of the Feature Type, which results in relating a Handler 
Feature Instance, containing the parameter assignment, to the event handler. This 
Handler Feature Instance may need to be created in case it does not already exist. 

In the case of per instance assignment of parameters, only the Handler Feature 
Type can be specified for the event handler. Again, this Handler Feature Type may 
need to be defined if it does not already exist. The actual parameter assignment is 
done during instantiation, when an instance of the specified Handler Feature Type is 
created. 

After all the behaviour-attributes have been formalised into event handlers, the 
definition of the Feature Type can be concluded by specifying the domain for the 
instances of the type, and a default value. The kind of content of both domain and 
default value depends on the class of Feature Type that has been defined. 
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Figure 4. Diagram 4 of the procedure for Feature Type definition 

2.3.2 Feature Type definition from a prototype 
The second scenario, Feature Type definition from a prototype, is the situation where 
a particular pattern of information, modelled in structures of Feature Instances, is 
acknowledged by the designer as representing a particular concept that will recur 
during the same or other design cases. The definition of a new Feature Type can then 
be done on the basis of the structure of Feature Instances that was modelled using 
relationships at the instance level. The ‘prototype’ that the designer has built by 
creating this structure of Features is turned into a new complex Feature Type that 
defines the relationships as its components. From this point on, this scenario follows a 
procedure similar to that of the first scenario, as described above. 



2.3.3 Feature Type recognition 
The procedure of turning a prototype Feature structure into a Feature Type definition 
could also be initiated by a design system. Using pattern matching algorithms, a 
design system can search for recurring patterns of Features and relationships at the 
instance level. Once such a recurring pattern has been found, it may be proposed to 
the designer as a concept of design. 

An important issue in the original area of Feature model in Mechanical 
Engineering is Feature recognition. In that area, Feature recognition has the meaning 
of recognising Features from a given geometric model. The geometry is analysed and 
searched for patterns of geometry that match the definition of known Feature Types. 
Once such a match is found, the geometry can be replaced by an instance of the found 
Feature Type. In this manner the geometric model, which is poor in semantics, is 
converted to a Feature model that provides all the additional information necessary to, 
for instance, manufacture the geometry of the designed product with the available 
machinery. 

Architectural design systems may well benefit from a similar approach to 
designing elements of a building. Providing the designer with generic geometric 
modelling tools, the created geometry may be analysed and interpreted as a structure 
of Features that semantically enrich the geometry with detailed architectural 
information. This approach is, of course, limited to those Features that can actually be 
discriminated on the basis of their geometric representation. Using inference methods, 
these geometrically recognised Feature structures may eventually be enhanced with 
additional Features that are defined as relationships to the geometric Features. For 
example, once a wall Feature has been recognised from the geometry created by the 
designer, Features such as material, construction method, cost, maximum load, etc. 
may be inferred from the existence of the wall Feature and added to the list of 
relationships of that Feature. 

Another kind of Feature recognition that can assist the designer in building up a 
consistent and semantically rich design model, is to try and recognise patterns of 
Features not from a geometric model but from the Feature model as it is being 
created. Here, it is not the bare geometry that is matched to definitions of Feature 
Types. Instead, in the Feature model the instance-level relationships between Feature 
Instances are analysed and compared to the structures of Feature Types in available 
libraries. In this manner, a given constellation of Features that are interrelated by the 
designer during modelling at the instance-level, can be replaced by an instance of a 
Feature Type that has been found to define the same relationships at the type-level. 
This facility of the design system supports the designer in creating consistent models 
and adding knowledge to the model that is implied by the design actions. The degree 
of similarity between found Feature structures and the relationships in a particular 
Feature Type should possibly be variant, allowing the designer some freedom in using 
accustomed terminology and including cases that look similar to defined Feature 
Types. Mainly the latter may well appear to be a stimulant to the designer, since the 
system is now encouraging the creativity of the designer and helping the development 
of the design as it proceeds. 



is there a root 
Feature Type?

select Feature 
Instance group

determine root 
Feature Type

match against set 
from Feature Type 

Library

yes

is similarity good 
enough?

determine Feature 
Type relationships

yes

match against 
relationships from 
Feature Type Lib. 

is similarity good 
enough?

extract Feature 
Type and replace 

Instances

apply heuristics to 
Feature Instances

apply heuristics to 
Feature Types

apply heuristics to 
Feature structure

successful?

Feature Type 
transition

yes

no

no

no

yes

no Exit

next
recognition
session

 

Figure 5. Procedure for computer aided Feature Type recognition 

Figure 5 shows the procedure that is followed in case the user or the system requests a 
Feature recognition process to be executed. First a group of Feature Instances must be 
selected from which known Feature Types are to be recognised. Selection of this 
group can be performed entirely by the designer, supported by design system 
interaction or completely automatic by a design application. From the Feature 
Instance group the corresponding Feature Types can be determined. 

In the Feature Type Library, some Feature Types are marked as a root type, 
namely those Feature Types that are considered a main architectural concept (e.g. 
wall, floor, space). The root Feature Type will be the objective of the recognition 
process. The question now is whether the selected group of Feature Instances contains 
an instance of such a root type: a root instance. In searching for a match between a 
possible root instance and the root types in the library, inheritance must be considered, 
meaning that a match is also made against sub-types in the library. 
 



If this root instance cannot be identified, additional heuristics are needed to introduce 
an appropriate root instance. For example, four Feature Instances of an assumed 
Feature Type called Space Boundary could geometrically constitute a space. If this 
geometrical relationship is detected then a Feature Type Transition procedure is 
executed that infers an instance of the Feature Type Space. After that, the Feature 
Recognition procedure is restarted. Identification of the root instance in the selection 
is not necessarily a completely automated task, it can also assisted by the user. 

Once a root instance is found or inferred, the Feature Types from the selected 
group of Feature Instances are matched against the structure of the root Feature Type 
in the Feature Type Library. Not all Feature Types related to the root Feature Type in 
the Feature Type Library are necessarily present in the selected group of Feature 
Instances. The relationships between the instances are not yet considered in this stage 
of the recognition process. 

Now the question is raised whether the similarity match is good enough. This 
decision can either be taken automatically by the system, using thresholds for the 
number and severity of missing instances, or in discussion between the system and the 
user. If the similarity is too low then additional heuristics are required, for instance a 
thesaurus of Feature Type names to detect possible cross references between the used 
names. Feature Type Transition is executed and the Feature Recognition process is 
restarted. 

If the Feature Type similarity is sufficient then the Feature Type relationships are 
determined from the selected group of Feature Instances. Considering the 
relationships in the Feature Type Library cluster, starting from the root Feature Type, 
they may: 
 
– be absent in the selected group of Feature Instances, 
– have a different (e.g. association instead of decomposition), or 
– have a different role name. 
 
First, a match is performed not taking these differences into account, just considering 
the topology of the structure. For this purpose graph matching techniques are used. 
Again, this successfulness of this match can be determined automatically by the 
system using thresholds or in discussion between the system and the user. Additional 
heuristics provide rules that can add or replace relationships in order to fit the selected 
Feature Instances in the structure of the Feature Type found in the Library. Since 
Feature Based modelling allows for describing a specific building concept in several 
ways, this process supports the conversion of different description styles to one 
generic style. 

The Feature recognition procedure exits if the one of the heuristics fails. At that 
point there are several possible results of the recognition process: 
 
1. One or more root instances have been identified or inferred and the structure of 

instance relationships found between Feature Instances in the model has been 
replaced by an instantiation of the structure found in the Feature Type Library; 



2. One or more root instances have been identified or inferred but a proper match of 
the relationships in the model to Feature Types in the library could not be made. 
In this case, the user can decide to use the relationships modelled at the instance 
level to define a new Feature Type: this is scenario 2 described above in section 
2.3.2 as Feature Type definition from a prototype. If a partial match could be 
made, then the user can alternatively decide to define a sub-type of the partially 
matched Feature Type. 

3. No root types known from the Feature Type Library could be identified or inferred 
in the selected group of Feature Instances. Again, the user may decide to define a 
new type from the prototype instances, which in this case would also lead to the 
definition of a new root type. 

3. DISCUSSION 

The proposed strategy for formalising architectural design knowledge is in fact a 
design process in itself. It is the design of architectural design knowledge; design at a 
meta level. As such the meta design level process dangers from the same pitfalls as 
the architectural design process illustrated in the introduction of this paper, namely ill-
defined problem, ad hoc process cycles etc. The three described strategies offer a style 
guide for architectural design knowledge modelling based on Feature technology. 
FBM allows for describing a building concept in different ways using (slightly) 
different Feature models. 

Applications, though, that will share FBM data require a predefined Feature model 
structure. Without this structure or additional knowledge it is impossible to extract 
information from the Feature model of a design. Therefore generic Feature Type 
libraries are needed that contain standardised Feature model structures. In that sense 
generic Feature Type libraries serve the same goal as standardisation efforts in 
product modelling (e.g. STEP Application Protocols, Industry Foundation Classes). In 
contrast with the STEP AP’s, a generic Feature Type library is dynamic, it can be 
update anytime leaving the existing Feature Type structure unchanged. Secondly 
Feature Type libraries can contain Feature Instances also. This is especially useful in 
case of specifying supplier’s information with a limited variable domain (e.g. the 
width of a door is either 800 mm, 820 mm or 840 mm). 

Inconsistency and incompleteness is an inherent characteristic of Feature Based 
modelling. This can be regarded both a pro and con of this modelling approach. In this 
respect, the following conclusions are drawn: 
 
– Inconsistency and incompleteness is an elementary part of architectural design and 

thus a prerequisite for architectural knowledge modelling. 
– Inconsistency and incompleteness are designer dependent. Apart from checking 

norms and standards there is no general rule a designer can count on for 
maintaining consistency. Also, incompleteness may be a target of a design 
process. 



– FBM, as currently developed in this research, does not support any kind of 
strategy for maintaining consistency and completeness for a specific design part or 
design task. Future research must be conducted on this issue, as is done in the 
work of (Eastman et al. 1997a; 1997b). 
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