
Achten, H.H., and J.P. van Leeuwen. 1998. “A Feature-based description technique for design processes: a case study.” In
Proceedings of the 4th Conference on Design and Decision Support Systems in Architecture and Urban Planning (CD-ROM).
Maastricht, NL: July 26-29, 1998.

A Feature-Based Description Technique for Design Processes: A Case Study

Henri Achten, Jos van Leeuwen
Eindhoven University of Technology

Department of Architecture, Building, and Planning
Eindhoven

The Netherlands

ABSTRACT

In order to develop appropriate tools for decision support in design processes, it is necessary to found
them on an understanding of design. Analytical techniques of design processes that have a direct
relationship with tool development can enhance design support systems development. The paper
focuses on a design support system in the VR-DIS research program. The aim of this research program
is to develop insight in the architectural design process and to establish design tools for architects
working in Virtual Reality. The basic approach for data modelling in VR in this research is based on an
extension of the Feature Based Modelling paradigm taken from design in mechanical engineering. The
computer model of the design in the system is a Feature-based model. This paper describes design
processes in terms of changes in the Feature-based model of the design. For this purpose, a case of a
house design is used. Drawings in the conceptual design phase up to the preliminary design phase are
studied. Each state of the drawings is described in terms of a Feature-model. Particular design actions
such as creation of spaces, definition of architectural elements, and changes during the design process
can be expressed in terms of changes in the Feature-model. Because of the use of Features, the changes
can be formalised in the VR-DIS system. The description in terms of Features offers an analytical tool
that leads to a functional brief for design support tools. The paper ends with a discussion of
implications and future work.

1 DESIGN SUPPORT FOR ARCHITECTURAL DESIGN

In order to develop appropriate tools for decision support in design processes, it is
necessary to found them on an understanding of design. Design, as a problem-solving
process, involves activities of searching information, analysing, manipulating, and
structuring information, generating new information, and evaluating and
communicating information. These are not sequential activities, but take place in
cycles (Markus 1969), (Maver 1970). (Lawson 1990) argues that designers tend to
switch in an ad hoc manner between different activities, resulting in concurrency of
activities with no predictable sequence. Design has a very dynamic nature which
should be supported by design aid systems.

In the Design Systems group, a research program has been initiated called VR-
DIS, meaning Design Information System and Distributed Interactive Simulation in
Virtual Reality. The goals and projects of this program have been reported in (de
Vries et al. 1997). The possible advantages of the VR-DIS program compared to

conventional CAD systems are discussed in (de Vries and Achten 1998). They
propose that VR technology shows the best performance in the early design stage,
using tools to create and evaluate (abstract) design models based on a three
dimensional dynamic representation, and that it has the most potential in those areas
where traditional CAAD has a poor performance. For this purpose, it is necessary to
develop a brief which defines the required functionality for such a system. The
performance specification should be formulated in terms that can easily be
transformed computationally. Feature-Based Modelling, an approach currently under
investigation and development in the group, provides such a formalism. If design
processes can be described in terms of Features, then mapping between findings of the
analysis and the functional brief can become quite straightforward. We have chosen to
analyse concrete design cases in terms of Features. Before we discuss the case, some
basic properties of Features will be introduced in the next section.

2. PRINCIPLES OF FEATURE-BASED MODELLING

The approach chosen in the VR-DIS program to model information in the research, is
based on Feature-Based Modelling (FBM), a technique of modelling product
information that originates from areas of Mechanical Engineering. The background
and history of these techniques have been discussed and summarised in early papers
by (Cunningham 1988), (Shah 1991; 1994), and (Bronsvoort 1993; 1996). FBM has
been reviewed for its relevance to architectural design in (Van Leeuwen et al. 1996;
1997). The main conclusions from the latter reviews are that concepts of FBM are
very relevant for modelling architectural information in a broader sense. In the VR-
DIS program, the following definition of the term Feature is employed (Van Leeuwen
1998a):

A Feature is a collection of high-level information, possibly emerging during design,
defining a set of characteristics or concepts with a semantic meaning to a particular
view in the life-cycle of a building.

This definition reflects four important aspects of Feature modelling in the
architectural context: (i) a Feature has high-level information with semantic meaning.
(ii) Both physical and non-physical characteristics and concepts can be defined. (iii)
Definition and use of emerging Features during design is supported, and (iv) A
Feature relates to a particular view in the life-cycle of a building.

(Van Leeuwen 1998a) provides a Feature modelling framework for the
development of information modelling systems for support of architectural design.
The framework defines how Features are to be modelled. It distinguishes between
three layers of information definition (figure 1):

The top layer describes the classes of Feature types that can be defined in the
system on the basis of the Abstract FeatureType. These are: Simple FeatureType,
Enumeration FeatureType, Geometric FeatureType, Complex FeatureType,
Constraint FeatureType, and Handler FeatureType.

The middle layer consists of Generic Feature Types (which are basic in the
Building & Construction industry) and Specific Feature Types (which are specific for
the design project at hand) that are by structure defined in the Meta-layer. There is no
principle distinction between Generic Feature Types and Specific Feature Types.

Both types are instantiated into Feature Instances, which are represented in
the third layer of the framework. Feature Instances contain actual building
information forming Feature models.

Feature Types can be seen as conceptual pieces of knowledge, whereas
Feature Instances represent the actual state a concept has in the design. Take for
example, a Feature Type called ‘UnitPrice,’ defined to represent information about
cost. It is of the class Simple FeatureType, having a basetype ‘real,’ and a unit
‘guilder per unit.’ A Feature Instance of the Feature Type ‘UnitPrice’ could be
‘RentalPrice_office1,’ with a value of 600 guilders a month. In a design there can be
many instances of the Feature Type ‘UnitPrice.’

Feature models are rather flexible in that they support alteration of specific
Feature Types during the design process. They are extensible through support of
defining new Feature Types and Feature Instances. Also, it is possible to define
relations between Feature Instances. This dynamic character of Feature modelling
seems to be in accord with the dynamic nature of design.

For Feature modelling, a tool has been developed by J. Jessurun to define
Feature Types and Feature Instances and to manipulate them (see figure 2; figure 3).
In time, Feature manipulation of the design is envisioned to be an integral part of the

Figure 1: Infrastructure of Feature-Based Modelling with
three Layers of Abstraction (Van Leeuwen and Wagter, 1997)

instantiated into instantiated into

defines format ofdefines format of

specialisation

FEATURE-BASED MODEL

describing particular building or design
in Feature Instances

META LAYER

defining classes of Feature Types

GENERIC FEATURE TYPES

SPECIFIC FEATURE TYPES

VR environment. Work by (Coomans 1997) is aimed towards this development. For
now, the Feature tool is used for Feature definition. Features can be represented in a
graphical way (Van Leeuwen 1998a) or in a textual way, the so-called Feature Type
Definition Language (Van Leeuwen 1998b). In this paper, we will be using the textual
representation.

3. METHODOLOGY OF THE CASE STUDY

The VR-DIS system requires functionality in terms of Feature modelling, as this kind
of data structuring has been chosen for the system. The goal of the case is to analyse a
design process in terms of Features, in order to acquire statements for the system
functional brief. The first case of this research is also used to set up and critique the
methodology of the analysis.

3.1 Case Material

The case is a small house design, which is followed from start to end. It is an actual
design executed by an architects office. In the architects office, AutoCAD is used
from the very start of the design work. Drawings during the design process are made

Figure 2: Feature Tool Showing Feature Type Definition
Section

as new copies rather than changing or revising old drawings. In this way, key phases
of the design process are available for analysis. The material available for analysis
consists of: one print A4 with the brief termed Brief, four prints A4 termed
Compilation 1 through 4, and four prints A2 termed Print 1 through 4. Compilation 1-
4 have drawings made during the design process. Prints 1-4 have the finalised design.

Compilation 1 through 4 contains 30 drawings made during the design
process. Each single drawing is taken as a step in the design process for which a
Feature model can be established. The transition from one step to the next therefore,
represents the design decisions taken from that phase to the next.

We define as a phase: one single drawing. Notation: phase n, n .
We define as a step: the transition from phase n → phase n+1.

In order to include the brief as included in document Brief in the phase
definition, we define the brief as phase 0.

3.2 Establishing The Design Process

The sequence of drawings is established on the work by (Achten 1997), and is
consulted with the project architect for verification and required changes. We found

Figure 3: Feature Tool Showing Feature Instance Section

that the first proposed sequence did not require many changes to represent the actual
sequence of the design process. In particular, two major sequences 10-18 and 21-30
had to be switched without internal changes since they were misunderstood in their
time order. The restructuring of the design process can be avoided in new cases when
each drawing is time-coded when established.

In the reconstructed sequence, each drawing was described on the basis of its
constituent elements. In an interview, the project architect was asked to verify the text
and to make changes if appropriate.

From the work, it appeared that analysis through the sequence of drawings and
description per drawing is a productive way to extract design information. We have to
note here, that verification in such a way after the design process can lead to post-
rationalisation, as termed by (Darke 1979), and to unwarranted agreement if the
description seems plausible enough. These aspects can be met when such comments
are made during the actual process. However, the main purpose of the research is
focused on the design functionality of VR-DIS rather than producing a precise
description of the design process.

3.3 Feature-Modelling Of The Case

The analysis is carried out as follows:

1. In phase n that is subject of analysis, identify the elements that have to be

defined as Features. These elements are concepts used in the design, and
typically are nouns in the text.

2. If the elements are new, define complex Feature Types and simple Feature

Types accordingly. An element is defined as complex Feature Type when it
cannot be defined as a simple Feature Type (string, integer, real, Boolean, or
enumeration). If the element in question already has been defined as a Feature
Type, record which changes have taken place and determine whether these
should be included in the Type. If such changes do not alter existing instance
definitions, then changing the Feature Type definition does not cause
inconsistencies with the current Feature model. However, since the Feature
Type should hold more general knowledge, it requires a careful balance what
to include in the definition.

3. In the case of new elements, define Feature Instances based on the Feature

Types above. In the case of existing Feature Types, record changes in Feature
Instances.

3.4 Example Of Feature-Modelling In The Case

The brief of phase 0 provides a lexicon of design elements that play a role in the
building design. In the example we will focus on the concept of space. Spaces such as
hall, toilet, and wardrobe are elements of the lexicon.

3.4.1 Feature Type Definition In The Case
Rather than defining a Feature Type for each kind of space (such as a Feature Type
‘hall’ for the hall, ‘toilet’ for the toilet, etc.), we will define a Feature Type space of
which the various spaces in the brief are instances.

The text in the brief notes the following aspects of space: function (such as
bedroom and bathroom), contained elements (such as stair and toilet), visual
relationship (such as kitchen closed with respect to living), access relationship (such
as doors to garden and bathroom), daylighting (such as daylighting in kitchen),
adjacency (such as scullery between garage, kitchen and bathroom), rooftype (such as
no glass roof), and number of persons (such as guest room for two persons).

Determining which aspects are to be included in the definition of the Feature
Type Space and which aspects are to be defined in other Feature Types is not
straightforward. If the aspect concerns only the space itself, and does not refer to
other elements, then it can be included in the type. Following this rule, constraint-like
relations such as visual relationship are better defined outside the Feature Type.
Function, contained elements, daylighting, rooftype, and number of persons are within
the particular space and therefore are included in the type definition.

The Feature Type space is defined accordingly, and results in the following
(see figure 2 for the representation in the Feature tool):

complex BuildingElement.space.Space {
 TypeDate {4/13/98}
 TypeAuthor {Henri}
 TypeDescr {"Space element within which activities can take place"}
 Spec BuildingElement.space.Space contains[0..?];
 Spec User.value.Daylighting daylightIsUsed[1..1];
 Spec User.value.Function function;
 Has BuildingElement.structure.Rooftype kindOfRoof;
 Spec User.value.NumberOfPersons numberOfPersons;
}

The first line identifies the Feature Type class, which is ‘complex’ in this case.

The text ‘BuildingElement.space.Space’ is the Feature identification (ID) which is a
unique description of the Feature. The ID is constructed as follows:
Library.section.Feature (van Leeuwen 1998b). The next three lines stating
‘TypeDate,’ ‘TypeAuthor,’ and ‘TypeDescr,’ are inherited from the abstract class
FeatureType. Each Feature class therefore, has these properties. In the following, we
will abbreviate by leaving out these properties. The next five lines define the aspects

of the Feature Type space as identified above. They are contained elements,
daylighting, function, rooftype, and number of persons respectively. Each line has a
three part structure: relation, FeatureID, and role. Four of the relations are
specifications since they further define the space. The rooftype relation is a
decomposition since it is a part of the space. The FeatureIDs refer to Feature Types
that are related to the Feature Type Space. Their definitions follow next. The role
describes the role of the Feature in the definition. The numbers in brackets (for
example ‘[0..?]’) indicates so-called cardinality, which indicates how many instances
of this role are allowed or required in a Feature Instance.

In order to complete the Feature Type definition of space in this phase, the
Feature Types User.value.Daylighting (we will leave out the Library.section part for
abbreviation where appriopriate, as well as the TypeDate and TypeAuthor part),
Function, Rooftype, and NumberOfPersons must be defined:

string BuildingElement.structure.Rooftype {
}
boolean User.value.Daylighting {
 TypeDefault {True}
}
string User.value.Function {
}
integer User.value.NumberOfPersons {
 TypeDefault {1}
 TypeUnit {"person"}
}

The other aspects we have identified above, will include the Feature Type

Space in their definition. We provide here an example of the Feature Type
Constraint.access.Space_Space which defines the access constraint between any two
spaces:

complex Constraint.access.Space_Space {
 Spec BuildingElement.space.Space access[2..2];
}

3.4.2 Feature Instance Definition In The Case
The Feature Types define the concepts used in the design. They have to be
instantiated into the particular Features used in the design. In the case of Feature Type
Space, this means making instances of spaces such as hall, living, kitchen, veranda,
etc. We will provide an example of the Feature Instance living (see figure 3 for the
representation in the Feature tool).

BuildingElement.space.Space Living = {
 contains[1] = Dining
 contains[0] = Sitting
 function = FunctionLiving
}
BuildingElement.space.Space Dining = {
function = FunctionDining
}
BuildingElement.space.Space Sitting = {
 function = FunctionSitting
}
User.value.Function FunctionDining = {
 Value {"Dining"}
}
User.value.Function FunctionLiving = {
 Value {"Living"}
}
User.value.Function FunctionSitting = {
 Value {"Sitting"}
}

In subsequent phases the Feature model is established on the basis of the

previous one, which enables to track changes during the design process.

4. THE CASE: HOUSE DESIGN

The case starts with the brief as noted on the document Brief. It is a one page
document made by the architect-in-chief of the office consulting with the client. The
brief is as follows:

• The hall has stairs, toilet, and wardrobe. The stairs should not be in the living

room, have no platform, and should not be straight.

• The living room has a separate sitting and dining.

• The kitchen is closed with respect to the living. It has a relation with the

garden. No table and chairs. Daylighting.

• Veranda sitting. Relation with living. No glass roof.

• Scullery between garage, kitchen and bedroom.

• Bedroom with daylighting, and bathroom (containing bathtub, shower, two

wash basins, and toilet pot). Bedroom has doors to garden and bathroom.

• Storey has guest room for two persons. Shower, toilet, and wash basin.

• Fireplace in living. Stone floor covering.

Table 1 presents the first eight drawings of the case, including brief textual
statements on representation and basic design decisions.

Table 1: Eight Drawings of the Case Study

Figure 4: Phase 1

Phase 1: The functional brief is translated
into spaces positioned in the site, giving an
indication of the required space and the
organisation of the ground floor plan. The
main mass is located in the north west,
leaving space for the garden. The module
used is 1.20 m. It is a ‘sketch-module’ used
by the architect.

Figure 5: Phase 2

Phase 2: Most spaces are placed on the
ground floor. The facade study shows the
building as it is realized in the vertical
plane, including window position and roof
shape.

Figure 6: Phase 3

Phase 3: The architect uses a grid from the
start, establishing space dimensions. The use
of a second grid is based on the location of
the double sized garage in the upper left
corner. Access to the garage in a straight
line would make this element visually too
dominant which is why part of the design is
rotated on the basis of a second grid. The
first grid = grid 1. The second grid = grid 2.

Figure 7: Phase 4

Phase 4: The center part of the building is
oriented towards grid 2. Spaces are placed
according to the new grids to see how they
work out.

Figure 8: Phase 5

Phase 5: In this phase, the basic variant is
introduced. The building mass consists of
two squares between which a center part is
defined, which is rotated relative to the
squares. This basic variant is used
throughout the following design process.
Upper left square = square A. Bottom right
square = square B. The center piece = center
piece.

Figure 9: Phase 6

Phase 6: Sub variant of phase 5. Square B is
lifted from the ground floor (dots indicating
columns). The center part has acquired an
L-shape lying against square A. The L-
shape is dominant with respect to the other
squares A and B. The bottom-side of the L
is aligned with bottom right corner of square
B. In that point, lines of grid 1 and grid 2
intersect. Square A is kept intact. The
elevated floor of square B is elaborated in
phase 7 and 8.

Figure 10: Phase 7

Phase 7: Facade study of phase 6, showing
particular roof shape for this design.

Figure 11: Phase 8

Phase 8: Facade study of phase 6, showing
particular roof shape for this design.

5. FEATURE-BASED DESCRIPTION OF THE CASE

We will not provide an exhaustive (and lengthy) list of the Feature model, but aim to
demonstrate the basic approach by discussing the first two steps.

5.1 Phase 0

In this phase, the brief has to be translated into a Feature Model. We will discuss
elements and constraints respectively here. With respect to the elements, section 3.4.1
and 3.4.2 show what particular examples of Feature Types and Feature Instances look
like (Feature Type Space and Feature Instance Living).

5.1.1 Elements
The Feature Types and Feature Instances in this phase are shown in table 2.

Table 2: Feature Types and Feature Instances of Elements in Phase 0

Feature Type (super type) Feature Instance
Space Hall, Toilet, Wardrobe, Living, Sitting, Dining, Kitchen,

Veranda, Scullery, Garage, Bedroom, Bathroom, Shower,
GuestRoom

Door (ElementInWall) DoorBathroom_Bedroom, DoorBathroom_Garden
Floor FloorLiving
Material MaterialFloorcovering, MaterialRoofVeranda
Roof RoofVeranda
Stair Stair
Garden Garden
Chair (Furniture) Chair
Table (Furniture) Table
Fireplace (Heating) FireplaceLiving
Bathtub (Sanitary) BathtubBathroom
ToiletPot (Sanitary) ToiletPotHall, ToiletPotGuestroom, ToiletPotBathroom
WashBasin (Sanitary) WashBasin1_Bathroom, WashBasin2_Bathroom,

WashBasinGuestroom
Daylighting DaylightingBedroom, DaylightingKitchen,

DaylightingVeranda
Function FunctionBedroom, FunctionHall, FunctionDining,

FunctionKitchen, FunctionSitting, FunctionLiving
Storey StoreyGroundFloor, StoreyFirstFloor
NumberOfPersons NumberOfPersonsGuestroom

The need for unique instance FeatureIDs leads to the concatenation of
descriptions, such as ‘ToiletPotGuestroom.’ Obviously, these could be any encoding,
but the current naming style gives clarity at this moment. The Feature Types and
Feature Instances define the nouns used in the brief. The super types enable to state
for example, that a space has ‘sanitary’ without being specific what kind of sanitary
exactly is meant.

5.1.2 Constraints
In phase 0, a number of statements are made about relations between elements that
can be considered as constraints: ‘stair should not be in the living room,’ ‘kitchen is
closed with respect to the living,’ ‘kitchen relation with the garden,’ ‘no table and
chairs in the kitchen,’ ‘scullery between garage, kitchen, and bedroom,’ ‘bedroom has
doors to garden en bathroom,’ and ‘fireplace in living.’

Some of these constraints concern spatial relations. These can be expressed as:
A _adjacent_ B, A _in_ B, A _above_ B, and their logical opposites A
NOTadjacent B, A _NOTin_ B, A _NOTabove_ B, with A and B Feature Types.

Other constraints concern access from one element to another. These access
constraints can be expressed as: A _access_ B and the opposite A _NOTaccess_ B.
Since this relation is reciprocal, only one _access_ constraint has to be defined. The
Feature Type definition of equal Feature Types in an _access_ constraint can be
established by using cardinality. In cases where there is no reciprocity, or where there
are unequal Feature Types in the relation, cardinality can not be used, since the theory
of Feature Modelling does not support strict orders in the Feature Types included in
the cardinality list.

The third type of constraint is expressed in the statement ‘kitchen is closed
with respect to the living,’ meaning that there is no visual relation between the
kitchen and living space. The constraints A _visual_ B and the opposite A
NOTvisual B are reciprocal, and can be defined in the same manner as the _access_
relation.

The ‘fireplace in living’ constraint can be expressed in two ways: (i) as a
Fireplace_in_Living instance of a Heating_in_Space Feature Type, or (ii) by
establishing an association-relation in the Feature Instance Living with the instance
Fireplace. We have chosen here for the first option, since more heating elements are
bound to occur in more spaces, which makes it reasonable to define a constraint
Feature Type for this relation.

Table 3: Constraint Feature Types in Phase 0

Spatial constraint
Feature Type

Spatial constraint Feature Instance

Space_adjacent_Space Kitchen_adjacent_Living, Veranda_adjacent_Living,
Scullery_adjacent_Garage, Scullery_adjacent_Bedroom,
Scullery_adjacent_Kitchen

Space_adjacent_Garden Kitchen_adjacent_Garden, Bedroom_adjacent_Garden
Storey_above_Storey Storey1_above_Storey0
Furniture_NOTin_Space Furniture_NOTin_Kitchen
Heating_in_Space Fireplace_in_Living
Stair_NOTin_space Stair_NOTin_Living
Access constraint
Feature Types

Access constraint Feature Instances

Space_Space Bedroom_access_Bathroom
Space_Garden Bedroom_access_Garden, Kitchen_access_Garden
Visual constraint
Feature Types

Visual constraint Feature Instances

Space_NOTvisual_Space Kitchen_NOTvisual_Living

At this point, phase 0 has been expressed in terms of Features. The textual
Feature Type and Feature Instance list is included in Appendix I after section 8.

5.2 Phase 1

This phase shows a key transition between the functional brief and a first composition
of spaces (see figure 4 in table 1). Significant changes with respect to phase 0 consist
of assigning shape and dimensions to spaces, and locating them in the site by means
of a grid.

5.2.1 Shape And Dimensions Assigned To Spaces
Phase 1 shows a number of spaces that have been given dimensions by virtue of
drawing shapes in a grid. The new notion of shape can be implemented as part of the
existing Feature Type Space or by defining a new Feature Type for shape, which is
associated with the Feature Type Space. When considering phase 1 only, the first
option would suffice. However, the notion of shape is very basic in architectural
design, and many other kinds of shapes may occur later in the design, each with their
own intrinsic properties. Therefore, we have chosen to define a supertype 2DShape of
which Rectangle is a subtype. Length, Point, and Coordinate also are new Feature
Types that have not yet been defined, and that are required to complete 2DShape:

complex Geometry.shape.2DShape {
 TypeDescr {"General shape definition with point of reference"}
 Spec Geometry.topology.Point referencePoint[1..1];
}
complex Geometry.shape.Rectangle(Geometry.shape.2DShape) {
 TypeDescr {"Rectangular shape with dimensions and reference point"}
 Spec Geometry.dimension.Length length[1..1];
 Spec Geometry.dimension.Length width[1..1];
}
real Geometry.dimension.Length {
 TypeDescr {"Measure along straight line in m"}
 TypeDefault {1}
 TypeUnit {"m"}
}
complex Geometry.topology.Point {
 TypeDescr {"Point in orthogonal axial system with x, y, z values"}
 Spec Geometry.topology.Coordinate xcoordinate[1..1];
 Spec Geometry.topology.Coordinate ycoordinate[1..1];
 Spec Geometry.topology.Coordinate zcoordinate[1..1];
}
real Geometry.topology.Coordinate {
 TypeDescr {"Coordinate along an axis in an axial coordination system"}
 TypeDefault {0}
 TypeUnit {"m"}
}

The above Feature Types are typical examples of Feature Types that would appear in

a standardised library of Generic Feature Types. The Feature Type 2DShape is associated
with the existing Feature Type Space (bold line shows addition to old Feature Type):

complex BuildingElement.space.Space {
TypeDescr {"Space element within which activities can take place"}
 Spec BuildingElement.space.Space contains[0..?];
 Spec User.value.Daylighting daylightIsUsed[1..1];
 Spec User.value.Function function;
 Has BuildingElement.structure.Rooftype kindOfRoof;
 Spec User.value.NumberOfPersons numberOfPersons;
 Assoc Geometry.shape.2DShape shape;
}

5.2.2 Grid And Location In The Site
The shapes are drawn in a grid which is used for coordination. In the interview, the
architect also stated that the grid provided a sketch-module of 1.20 m. Although the
grid can be defined by stating its module, it also needs a point of origin relative to
which coordinates are established (this also accommodates the use of multiple grids).
Both the origin of the grid and the position of elements in the grid require a set of
coordinates. We define therefore, on the instance level, a Feature Instance Origin
(instance of Geometry.topology.Point) relative to which measures can be taken and
grids positioned. The left-bottom corner of Grid_1 is placed on the Origin.

The positive x-axis is oriented horizontally and to the right of the Origin. The
positive y-axis is oriented vertically and above the Origin, as is customary in
architectural design. For the Feature Type Rectangle, the reference point is defined as
the most left-bottom corner of the rectangle, width and length being measured in the
orientation of the positive x and y axis.

These Feature Types and Feature Instances suffice to establish the state
defined in phase 1. Kitchen, for example, is changed because of the additions to the
Feature Type Space of which it is an instance, and the definition of its location and
dimensions in the associated Rectangle. The Kitchen has dimensions 3.60 m x 3.60 m,
and is located on (6.0, 6.0, 0):

BuildingElement.space.Space Kitchen = {
 Descr {"Kitchen"}
 daylightIsUsed = DaylightingKitchen;
 function = FunctionKitchen;
 shape = Rectangle_Kitchen;
}
Geometry.shape.Rectangle Rectangle_Kitchen = {
 Descr {"Rectangular shape for kitchen"}
 length = Length_Kitchen;
 referencePoint = ReferencePoint_Kitchen;
 width = Width_Kitchen;
}
Geometry.dimension.Length Length_Kitchen = {
 Value {3,6}
}
Geometry.dimension.Length Width_Kitchen = {
 Value {3,6}
}
Geometry.topology.Coordinate Coordinate_X_Kitchen = {
 Value {6}
}
Geometry.topology.Coordinate Coordinate_Y_Kitchen = {
 Value {6}
}
Geometry.topology.Coordinate Coordinate_Z_Kitchen = {
 Date {7-05-98}
 Author {Henri}
 Value {0}
}

Note that in phase 1 not all spaces mentioned in phase 0 are present, and that

there are four spaces that have not been assigned a function name by the architect.
The other instances of spaces that are included in phase 1 (garage, bedroom, scullery,
hall, dining, veranda, and space_0 through space_4) are changed in the same manner
as the Kitchen.

6. TOWARDS A FUNCTIONAL BRIEF FOR VR-DIS

The discussion of phase 0 and phase 1 has shown that it is possible to describe a
design process in terms of Features. The VR-DIS system aims to combine Feature-
based modelling with an innovative approach of an interface for design and design
information. In a 3D immersive environment, the designer should be able to
manipulate spatial elements of the design, as well as the underlying Feature model
(Coomans and Timmermans 1997; 1998; Coomans and Achten 1998 explore the
interface properties of such a system).

In order to establish a prototype of the VR-DIS system, we aim for a system
that can accommodate design activities such as studied in phases 0 through 7 of the
case. The system should be able to:

1. Aid in translating the functional brief into Feature Types and Feature

Instances.

2. Check if all requested rooms and spaces fit on the site.

3. Check with the principal if the requirement list is complete.

4. Give a first impression of possible composition of rooms and spaces.

5. Give a first impression of the layout of the plan.

6. Give a first impression of the facades, including windows, doors, and

materials.

7. Give a first impression of possible roof shapes.

A more detailed account of the design system is provided by (de Vries and Jessurun
1998).

7. DISCUSSION

The paper discusses a first approach towards describing design processes in terms of
Feature Based Modelling as defined by (van Leeuwen 1998a). This approach has a
number of significant properties that are relevant to researching design processes and
establishing a functional brief for the VR-DIS project.

• Description by means of a Feature model is much more precise and

comprehensive than a standardised textual description.

• Feature-Based modelling as defined by (van Leeuwen 1998a; 1998b) provides

a flexible and extensible language with which the changing concepts of a
design can be captured.

• The flexibility of definition however, also means that there are quite a number

of ways in which to establish the Feature model during the design process.
Often, the most economical definition becomes apparent only later in the
process.

• A considerable number of Feature Types in the case can be generalised as

Types that will be used time and again in architectural design. Defining these
so-called ‘generic Feature Types’ in each separate design process does not
make much sense. In principle, the Building & Construction Industry has to
provide a standard set of Generic Feature Types.

• Working with the Feature Tool has brought to light that issues of control in the

structure of the Feature Model will become important when the Feature Model
grows in complexity and during the course of design. These aspects have not
yet been addressed in the Feature Tool and will also play a role in the Feature
view of the VR-DIS system (Coomans and Timmermans 1998).

• Consistency will be an important issue in the modelling system. This includes

consistency, for instance, between the definition of various Feature Types. It
also includes consistency between the Feature Type definitions and the
instances of these types. The latter is especially important when type
definitions are amended and the existing instances are to be maintained. These
kinds of consistency can be implemented using the class of Handler Feature
Types.

Future work consists of extending the case study to the remaining phases of the case
(phase 8 through phase 31), and to analyse other cases in order to establish the
Feature-Based description technique.

8. ACKNOWLEDGEMENTS

This research is performed within the VR-DIS research program, and builds on the
Ph.D. research by van Leeuwen under supervision of Prof.ir. H. Wagter and Prof.dr.
R.M. Oxman. Thanks are due to the architectural firm Architektenburo Jan Merks
B.V., Veldhoven and architect ir. L. Stiphout for their cooperation in the case study.
Also, we would like to thank dr.ir. Bauke de Vries and ir. Joran Jessurun for
contributions to the Feature description and the production of the Feature tool.

APPENDIX I

Feature Type list of phase 0 (abbreviated Feature notation):

complex BuildingElement.space.Space {
 Spec BuildingElement.space.Space contains[0..?]
 Spec User.value.Daylighting daylightIsUsed[1..1]
 Spec User.value.Function function
 Has BuildingElement.structure.Rooftype kindOfRoof
 Spec User.value.NumberOfPersons numberOfPersons
}
complex BuildingElement.space.Storey {
 Spec BuildingElement.space.Space spacesInStorey[0..?]
}
complex BuildingElement.structure.Door(BuildingElement.structure.ElementInWall) {
}
complex BuildingElement.structure.ElementInWall {
}
complex BuildingElement.structure.Floor {
 Spec BuildingElement.structure.Material floorMaterial
}
string BuildingElement.structure.Material {
}
complex BuildingElement.structure.Roof {
 Spec BuildingElement.structure.Material roofMaterial
}
string BuildingElement.structure.Stair {
}
complex Constraint.above.Storey_above_storey {
 Spec BuildingElement.space.Storey above[1..1]
 Spec BuildingElement.space.Storey under[1..1]
}
complex Constraint.access.Space_Garden {
 Spec Ground.plot.Garden accessFrom[1..1]
 Spec BuildingElement.space.Space accessTo[1..1]
}
complex Constraint.access.Space_Space {
 Spec BuildingElement.space.Space access[2..2]
}
complex Constraint.adjacent.Space_adjacent_Space {
 Spec BuildingElement.space.Space adjacent[2..2]
}
complex Constraint.in.Furniture_NOTin_Space {
 Spec BuildingElement.space.Space doesNotHave[1..1]
 Spec Infill.furniture.Furniture isNotIn[0..?]
}

complex Constraint.in.Heating_in_Space {
 Spec BuildingElement.space.Space HasGot[1..1]
 Spec Infill.heating.Heating IsIn[1..1]
}
complex Constraint.in.Stair_NOTin_space {
 Spec BuildingElement.space.Space doesNotHave[1..1]
 Spec BuildingElement.structure.Stair isNotIn[1..1]
}
complex Constraint.adjacent.Space_adjacent_Garden {
 Spec BuildingElement.space.Space AdjacentToGarden[1..1];
 Spec Ground.plot.Garden AdjacentToSpace[1..1];
}
complex Constraint.adjacent.Space_adjacent_Space {
 Spec BuildingElement.space.Space adjacent[2..2];
}
complex Constraint.visual.Space_NOTvisual_Space {
 Spec BuildingElement.space.Space NOTvisual[2..2]
}
complex Ground.plot.Garden {
}
complex Infill.furniture.Chair(Infill.furniture.Furniture) {
}
complex Infill.furniture.Furniture {
 Spec User.value.NumberOfPersons NumberOfUsers
}
complex Infill.furniture.Table(Infill.furniture.Furniture) {
}
complex Infill.heating.Fireplace(Infill.heating.Heating) {
}
complex Infill.heating.Heating {
}
complex Infill.sanitary.Bathtub(Infill.sanitary.Sanitary) {
}
complex Infill.sanitary.Sanitary {
}
complex Infill.sanitary.ToiletPot(Infill.sanitary.Sanitary) {
}
complex Infill.sanitary.WashBasin(Infill.sanitary.Sanitary) {
}
boolean User.value.Daylighting {
 TypeDefault {True}
}
string User.value.Function {
}
integer User.value.NumberOfPersons {
 TypeDefault {1}
 TypeUnit {"person"}
}

Feature Instance list of phase 0 (abbreviated Feature notation):

BuildingElement.space.Space Bathroom = {
 contains[0] = ShowerBathroom
 Spec BathtubBathroom HasBathtub
 Spec ToiletPotBathroom HasToiletPot
 Spec WashBasin1_Bathroom HasWashBasin1
 Spec WashBasin2_Bathroom HasWashBasin2
}
BuildingElement.space.Space Bedroom = {
 daylightIsUsed[0] = DaylightingBedroom
 function = FunctionBedroom
}
BuildingElement.space.Space Dining = {
 function = FunctionDining
}

BuildingElement.space.Space Garage = {
}
BuildingElement.space.Space Guestroom = {
 contains[0] = ShowerGuestroom
 numberOfPersons = NumberOfPersonsGuestroom
 Spec WashBasinGuestroom HasWashBasin
}
BuildingElement.space.Space Hall = {
 contains[1] = WardrobeHall
 contains[0] = ToiletHall
 function = FunctionHall
 Spec Stair HalHasStair
}
BuildingElement.space.Space Kitchen = {
 daylightIsUsed[0] = DaylightingKitchen
 function = FunctionKitchen
}
BuildingElement.space.Space Living = {
 contains[1] = Dining
 contains[0] = Sitting
 function = FunctionLiving
}
BuildingElement.space.Space Scullery = {
}
BuildingElement.space.Space ShowerBathroom = {
}
BuildingElement.space.Space ShowerGuestroom = {
}
BuildingElement.space.Space Sitting = {
function = FunctionSitting
}
BuildingElement.space.Space ToiletGuestroom = {
 Spec ToiletPotGuestroom HasToiletPot
}
BuildingElement.space.Space ToiletHall = {
 Spec ToiletPotHall HasToiletPot
}
BuildingElement.space.Space Veranda = {
 daylightIsUsed[0] = DaylightingVeranda
 function = FunctionSitting
}
BuildingElement.space.Space WardrobeHall = {
}
BuildingElement.space.Storey StoreyFirstFloor = {
 spacesInStorey[0] = Guestroom
}
BuildingElement.space.Storey StoreyGroundfloor = {
 spacesInStorey[7] = Hall
 spacesInStorey[6] = Living
 spacesInStorey[5] = Kitchen
 spacesInStorey[4] = Scullery
 spacesInStorey[3] = Bedroom
 spacesInStorey[2] = Bathroom
 spacesInStorey[1] = Garage
 spacesInStorey[0] = Veranda
}
BuildingElement.structure.Door DoorBathroom_Bedroom = {
}
BuildingElement.structure.Door DoorBathroom_Garden = {
}
BuildingElement.structure.Floor FloorLiving = {
 floorMaterial = MaterialFloorcovering
}
BuildingElement.structure.Material MaterialFloorcovering = {
 Value {"Stone"}
}

BuildingElement.structure.Material MaterialRoofVeranda = {
 Value {"No glass"}
}
BuildingElement.structure.Roof RoofVeranda = {
 roofMaterial = MaterialRoofVeranda
}
BuildingElement.structure.Stair Stair = {
 Value {"Not straight, no platform"}
}
Constraint.above.Storey_above_storey Storey1_above_storey0 = {
 above[0] = StoreyFirstFloor
 under[0] = StoreyGroundfloor
}
Constraint.access.Space_Garden Bedroom_access_Garden = {
 accessFrom[0] = Garden
 accessTo[0] = Bedroom
}
Constraint.access.Space_Garden Kitchen_access_Garden = {
 accessFrom[0] = Garden
 accessTo[0] = Kitchen
}
Constraint.access.Space_Space Bedroom_access_Bathroom = {
 access[1] = Bathroom
 access[0] = Bedroom
}
Constraint.in.Furniture_NOTin_Space Furniture_NOTin_Kitchen = {
 doesNotHave[0] = Kitchen
 isNotIn[1] = Chair
 isNotIn[0] = Table
}
Constraint.in.Heating_in_Space Fireplace_in_Living = {
 HasGot[0] = Living
 IsIn[0] = FireplaceLiving
}
Constraint.in.Stair_NOTin_space Stair_NOTin_Living = {
 doesNotHave[0] = Living
 isNotIn[0] = Stair
}
Constraint.visual.Space_NOTvisual_Space Kitchen_NOTvisual_Living = {
 NOTvisual[1] = Kitchen
 NOTvisual[0] = Living
}
Ground.plot.Garden Garden = {
}
Infill.furniture.Chair Chair = {
}
Infill.furniture.Table Table = {
}
Infill.heating.Fireplace FireplaceLiving = {
}
Infill.sanitary.Bathtub BathtubBathroom = {
}
Infill.sanitary.ToiletPot ToiletPotBathroom = {
}
Infill.sanitary.ToiletPot ToiletPotGuestroom = {
}
Infill.sanitary.ToiletPot ToiletPotHall = {
}
Infill.sanitary.WashBasin WashBasin1_Bathroom = {
}
Infill.sanitary.WashBasin WashBasin2_Bathroom = {
}
Infill.sanitary.WashBasin WashBasinGuestroom = {
}
Constraint.adjacent.Space_adjacent_Garden Bedroom_adjacent_Garden = {
 AdjacentToGarden = Bedroom;

 AdjacentToSpace = Garden;
}
Constraint.adjacent.Space_adjacent_Garden Kitchen_adjacent_Garden = {
 AdjacentToGarden = Kitchen;
 AdjacentToSpace = Garden;
}
Constraint.adjacent.Space_adjacent_Space Kitchen_adjacent_Living = {
 adjacent[1] = Living;
 adjacent[0] = Kitchen;
}
Constraint.adjacent.Space_adjacent_Space Scullery_adjacent_Bedroom = {
 adjacent[1] = Bedroom;
 adjacent[0] = Scullery;
}
Constraint.adjacent.Space_adjacent_Space Scullery_adjacent_Garage = {
 adjacent[1] = Garage;
 adjacent[0] = Scullery;
}
Constraint.adjacent.Space_adjacent_Space Scullery_adjacent_Kitchen = {
 adjacent[1] = Kitchen;
 adjacent[0] = Scullery;
}
Constraint.adjacent.Space_adjacent_Space Veranda_adjacent_Living = {
 adjacent[1] = Living;
 adjacent[0] = Veranda;
}
User.value.Daylighting DaylightingBedroom = {
 Value {True}
}
User.value.Daylighting DaylightingKitchen = {
 Value {True}
}
User.value.Daylighting DaylightingVeranda = {
 Value {True}
}
User.value.Function FunctionBedroom = {
 Value {"Sleeping"}
}
User.value.Function FunctionDining = {
 Value {"Dining"}
}
User.value.Function FunctionHall = {
 Value {"Entrance and circulation"}
}
User.value.Function FunctionKitchen = {
 Value {"Cooking and food preparation"}
}
User.value.Function FunctionLiving = {
 Value {"Living"}
}
User.value.Function FunctionSitting = {
 Value {"Sitting"}
}
User.value.NumberOfPersons NumberOfPersonsGuestroom = {
 Value {2}
}

9. REFERENCES

Achten, H.H. (1997) Generic Representations - An Approach For Modelling
Procedural And Declarative Knowledge Of Building Types In Architectural
Design, Bouwstenen 46, Technische Universiteit Eindhoven, Eindhoven.

Achten, H.H. and Oxman, R.M. and Bax, M.F.Th. (1998) Typological knowledge
acquisition through a schema of generic representations, Proceedings of
Artificial Intelligence in Design ’98, Lisbon, Portugal, July 20-23, 1998
(forthcoming).

Bronsvoort, W.F. and Jansen, F.W. (1993) Feature modelling and conversion, Key
concepts to concurrent engineering, Computers in Industry, 21(1), pp. 61-86.

Bronsvoort, W.F. and Dohmen, M. and Bidarra, R. and Van Holland, W. and De
Kraker, K.J. (1996) Feature modelling for concurrent engineering,
Proceedings of the International Symposium on Tools and Methods for
Concurrent Engineering '96, Technical University of Budapest, Budapest,
pp.46-55.

Coomans, M.K.D and Timmermans, H.J.P. (1997) Towards a Taxonomy of Virtual
Reality User Interfaces, Proceedings of the International Conference on
Information Visualisation (IV97), London, Great Britain, 27-29 August, 1997.

Coomans, M.K.D. and Achten, H.H. (1998) Mixed Task Domain Representation in
VR-DIS, Proceedings of the 3rd Asia-Pacific Conference on Computer
Human Interaction, APCHI98, July 15-17, Hayama-machi, Kanagawa, Japan,
1998 (forthcoming).

Coomans, M.K.D. and Timmermans, H.J.P. (1998) A VR User Interface for Design
by Features, Proceedings of the 4th Conference on Design and Decision
Support Systems in Architecture and Urban Planning, Maastricht, the
Netherlands, July 26-29, 1998, (forthcoming).

Cunningham, J.J., and J.R. Dixon (1988) Designing with Features: the origin of
Features, Proceedings ASME Computers in Engineering Conference, San
Francisco.

Darke, J. (1979) The Primary Generator and Design Process, in Cross, N. (ed.)
Developments in Design Methodology, John Wiley & Son Ltd.

Lawson, B. (1990) How designers think, the design process demystified, 2nd edition,
Butterworth Architecture, London.

Leeuwen, J.P. van and Wagter, H. and Oxman, R.M. (1996) Information Modelling
for Design Support. Proceedings of the 3rd Design and Decision Support
Systems in Architecture and Urban Planning Conference, August 18-21, Spa,
Belgium.

Leeuwen, J.P. van and Wagter, H. (1997). Architectural Design-by-Features. CAAD
futures 1997. Kluwer Academic Publishers, Dordrecht.

Leeuwen, J.P. van and Wagter, H. (1998a) A Features framework for architectural
information, Proceedings of Artificial Intelligence in Design ’98, Lisbon,
Portugal, July 20-23, 1998 (forthcoming).

Leeuwen, J.P. van (1998b) FBAIM and F(t)DL. Feature Based Architectural
Information Model and Feature (type) Definition Language, internal report.

Markus, Th.A. (1969) The role of building performance measurement and appraisal in
design method, in Broadbent and Ward (eds.), Design methods in architecture,
Lund Humphries, London.

Maver, Th.W. (1970) Appraisal in the building design process, in Moore (ed.),
Emerging methods in environmental design and planning, MIT Press,
Cambridge, Massachusetts.

Shah, J.J. and Mäntylä, M. and Nau, D.S. (eds.) (1994) Advances in Feature based
manufacturing. Elsevier Science, Amsterdam.

Shah, J.J (1991) Assessment of Features technology, Computer-Aided Design, 23(5),
pp. 331-343.

Vries, B. de and Leeuwen, J.P. van and Achten, H.H. (1997) Design studio of the
future, Proceedings of the CIB W78 Conference “Information Technology
Support for Construction Reengineering,” Cairns, Australia, pp. 139-148.

Vries, B. de and Achten, H.H. (1998) What offers Virtual Reality to the designer?,
Workshop ‘The art of Design’ at the Third Biennial World Conference on
Integrated Design & Process Technology, (forthcoming).

Vries, B. de and Jessurun, A.J. (1998) An experimental design system for the very
early design stage, Proceedings of the 4th Conference on Design and Decision
Support Systems in Architecture and Urban Planning, Maastricht, the
Netherlands, July 26-29, 1998 (forthcoming).

