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Abstract. Supporting architectural design by means of computers 
requires the development of formal representations of design information. 
The paper reviews the way information is dealt with in design and 
describes this as the dynamic nature of design. This leads to the notion 
that an information model should evolve along with the development of a 
design. Keywords in this evolution are extensibility and flexibility of 
information models. The approach developed to fulfil these requirements 
is based on the techniques of Feature-Based Modelling of which the 
concepts and potentials are discussed with respect to their relevance for 
the area of architectural design. Subsequently, a framework is presented 
for the development of architectural Feature-based modelling systems. 
This framework includes a layered schema for information definition that 
provides basic classes of Feature types and the conditions for extension 
and flexible manipulation of both conceptual and actual information 
models. Relationships between the entities in these models are discussed 
in more detail and an approach is introduced for supporting the modelling 
of relationships that are not defined at the conceptual, or typological, 
level. 
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1. Information in Design. 

Design, as a problem-solving process, involves activities of searching 
information, analysing, manipulating, and structuring information, generating 
new information, and evaluating and communicating information. These are not 
sequential activities, but take place in cycles (Markus, 1969; Maver, 1970). 
Lawson (1990) argues that designers tend to switch in an ad hoc manner 
between different activities, resulting in concurrency of activities with no 
predictable sequence. This dynamic nature of design is subject of the research 
presented in this paper. 

Information is generated during design, concerning the definition and 
specification of selected or generated solutions. Design also involves combining 
information, finding relations between data and developing or discovering new 
structures in concepts and ideas that lead to design-solutions. Information is 
clearly not treated as static data, its content and structure is invariably subject to 
change. Assuming that designing and design-modelling are two tasks that are 
best performed concurrently, this means that an information model for support 
of design-tasks requires a flexibility that allows for (re-)definition and 
(re-)structuring of information: it requires evolution of the model during design. 

1.1. EVOLUTION IN PRODUCT MODELS. 

The notion of evolution and adaptation of models of design information is also a 
basis for the development of the Engineering Data Model by Eastman et al. 
(1991; 1995; 1997). In the EDM research it is argued that the schema for CAD 
data cannot be known beforehand, but is “defined incrementally as design 
proceeds” (Eastman 1991). The structure of design data describing components 
in design depends upon decisions regarding the technology and functions 
associated with the design components. 

Ramscar (1994) believes that product modelling approaches will not achieve 
a complete model that is necessary for an integration or exchange standard, 
because they result in models with a fixed view, which are unable to deal with 
unforeseen design data and can not respond to the changing needs of their users. 

The Building and Construction Core Model in ISO 10303, or STEP (ISO 
1996), does not form a very fixed view in itself since it contains a rather loose 
collection of information entities. However, the purpose of this core model is to 
serve as a basis for Application Protocols (APs), dedicated to a particular range 
of applications. These APs will consist of rigid models, not being able to deal 
with unforeseen data-structures. 
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1.2. ILL-DEFINED PROBLEMS IN DESIGN. 

As a problem solving process, design involves the structuring of information 
that often concerns ill-defined problems. Ill-defined here means that the 
problem is not known in full detail from the start of the design task, and 
consequently that its structure cannot be presumed. This is especially the case 
when many parts of the problem are interrelated while the relationships are not 
obvious. Design then involves recognising the structure of the design problem 
(Chermayeff and Alexander, 1963) or converting an ill-structured problem to 
well-structured sub-problems  or to a more constraint problem (Simon, 1973). 

Coyne et al. (1991) conclude that the formulation of the design problem is 
itself dynamic, its representation being revised continually in accordance with 
the changing situation. “The formulation of the design problem can be regarded 
as a problem-solving task in itself, one that is undergoing reformulation as the 
process continues.” (Coyne et al. 1991) 

1.3. STYLISTIC EVOLUTION OF DESIGNERS. 

Another aspect of the dynamic nature of design is that designers learn. They 
change their approach to solving design-problems, finding new techniques, new 
rules, new concepts. Mitchell (1990) refers to this as stylistic evolution, and 
stresses that CAD systems must provide for this essential component of creative 
design. A design system, according to Mitchell, is an open, flexible, constantly 
evolving knowledge-capture device rather than static collections of familiar 
tools and dispensers of established wisdom. 

Conceptual information models that underlie design support systems must 
accommodate this stylistic evolution by adaptation of the conceptual model to 
the changing demands. A similar evolution can evidently be noticed in the 
Building & Construction industry as a whole, resulting in the constant 
development of new techniques, methods, products, and materials. These new 
agents in the field also require adaptation of information models for design 
support. 

1.4. CREATIVITY REQUIREMENTS FOR INFORMATION MODELS. 

The following conclusions can be drawn from the above considerations of the 
dynamic nature of design: 

 Design is a process of problem-solving, often concerning problems that are 
initially not well-structured; 

 Activities in design do not take place in a predictable order, the content and 
structure of information dealt with in design activities cannot be foreseen; 
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 Information related to design problems and solutions is dealt with in 
different ways, related to the approach of solving the design problem. Design 
involves creativity through combination of these approaches: 
 Selection of an existing solution involves matching information related to 

the problem and the existing solutions; 
 Creating a new solution involves generating new information; 
 Combining existing information in order to find new relations or 

structures in concepts that lead to design solutions; 
 Altering the design-problem in order to find a suitable solution. 

 Individual designers, as well as the sector of the Building & Construction 
industry as a whole, are under constant development, with new knowledge, 
concepts, techniques, methods, products, materials, and styles emerging. 
Information models must evolve along with this development, in order to 
accurately represent the changing domain of design and B&C. 

The above conclusions lead to the statement of new requirements on 
information models that are to support the dynamic nature of design. These 
requirements, discussed in detail in the next section, are denoted by the term 
extensibility and flexibility, concerning the possibility for an information model 
to evolve along with the development of a design. 

2. Models of Dynamic Information. 

For information to be represented in an information model it is necessary that 
the definition of information be formally specified in a conceptual information 
model, detailing the type of the content of information and the structure of the 
content. For instance, the formal definition of the information concerning chairs 
would specify the type of properties that characterise chairs: number of legs, 
colour, arm-rests, headrest, etc. 

2.1. EXTENSIBILITY. 

In creative design, it is very often the case that typological information is not 
known in advance, that is, before information needs to be modelled for a 
particular case. In other words, concepts and notions in creative design cannot 
always be anticipated in generic conceptual information models; they are often 
defined during design, by designers. Continuing the example of chairs, the 
design of a chair with a tip-up seat may result in the definition of a sub-type of 
chairs with additional properties. 

Some situations are listed below in which the content and structure of 
information concerning a particular concept cannot be known prior to the 
moment this concept comes into actual usage. 
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 Information representing a specific design-style is defined by a designer and 
is in a constant state of change and extension during the learning process and 
career of the designer; 

 The definition of style-rules or conventions on, for instance, dimensions and 
methods of construction for a particular building project can only be 
formally determined during the appropriate stages of the design and 
construction process of this particular building; 

 The development of new techniques and methods of construction requires 
that representations for these new concepts be added to conceptual 
information models; 

 The development of new products or materials to be used in construction 
may require formal definition of new kinds of characteristics that will be 
used to describe them; 

 A notable example of the above situation is the development of industrial 
construction systems. The production of the individual components of such a 
prefabricated system requires a dedicated conceptual information model. 
Subsequently, the application of such a system in actual building design and 
construction requires information to be available that is strongly specific, in 
content and structure, for the particular building system. This includes 
information on the characteristics of the components and the system as a 
whole, the requirements posed on the design and construction with the 
system, and, for instance, assembly-procedures. 

In most of these situations, concepts remain subject to change after they have 
been formally defined. For conceptual information models to evolve with these 
changing concepts, flexibility of the model is required, which is discussed in 
detail in the next section. 

Another issue that pleads for the extensibility of conceptual information 
models is that the responsibility of the definition of information concerning a 
particular concept should rest with the designer of the concept, not with, e.g., 
engineers or vendors of modelling software. 

2.2. FLEXIBILITY. 

One of the reasons why a conceptual information model should be flexible 
follows logically from the above discussed requirement of extensibility. 
Extension of a conceptual model requires flexibility: newly defined entities of 
information need to be embedded in the conceptual model. They will define 
relationships to existing entities, and reversely, existing entities will need to 
relate to new entities. For example the definition of a new component in an 
industrial building system inevitably needs to have relationships to the 
components already existing in this system, while the existing components 
probably will need to gain ‘awareness’ of the new component. This requires an 
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adequate level of flexibility in the definition of information entities, allowing 
properties or attributes defining relationships to be modified or added. 

Obviously, flexibility is also required when a conceptual information model 
is modified in other manners than by extension with new entities of information. 
This kind of restructuring the conceptual model may follow a change of insight 
in the role and function of certain parts of the model: a change in the meaning of 
certain concepts. The stylistic evolution of designers, argued by Mitchell (1990) 
to be an essential part of creative design, is an example of when such a 
modification of concepts may occur. 

Another situation involving restructuring an information model, does not 
necessarily take place on a conceptual level, i.e., on the level of typological 
definitions. The type of flexibility that is required by this kind of modification 
of a model’s structure is related to the flexibility in the way designers use their 
concepts. The relationships between concepts in a design are rarely constant 
during the course of design; they are very likely to change from moment to 
moment, as a designer changes point of view, has a new inspiration, or tries to 
find other possibilities for solutions. This dynamic way of dealing with concepts 
and notions in design is regarded a crucial aspect of creativity in design and has 
been subject of research by for instance Coyne et al. (1991). 

Adaptation of the conceptual model does not result in the desired behaviour 
of the models, since a similar concept may be used in different ways, even 
within a single model. This means that the desired dynamic behaviour should lie 
within the formal definition of the concept itself. The function of a concept may 
have to be defined as a dynamic one, as well as its relationships to other parts of 
the design. 

A simple, though not trivial example will illustrate this in a design-situation. 
Spaces and boundaries of spaces are concepts that play an important role, 
especially in the earlier stages of design. The definition of a space boundary in 
an early stage is rarely fully known in the detail that it will have at more final 
stages. There is an evolution of the notion a particular designer has about the 
space boundary during the course of design. Some possible states of this notion 
of space boundary by the designer are shown schematically in figure 1. 
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Figure 1  A space boundary in evolution during design. The definition of the entity-type space-

boundary changes while design progresses. (Express-G notation) 
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2.3. IMPLICATIONS ON THE DEVELOPMENT OF DESIGN SYSTEMS. 

The above considerations on how to support creativity in design by means of 
dynamic information models have the following immediate implications on the 
design and development of design systems. 

Concerning extensibility, a design system should allow designers to define 
and add the types of entities that will be used during the creation of a model. 
This ensures that the design model accurately represents the rationale of the 
design with entities that reflect the concepts and terminology used in taking 
design decisions. The newly defined entity types need to be embedded in the 
structure of existing entity types, which may require adaptation of existing 
types. This kind of modification of conceptual models forces strong 
requirements on the management of integrity of design models, an issue that has 
been addressed in Eastman (1996) and is also subject of developments in Bailey 
(ed.) (1997). 

Concerning flexibility, design systems should support the flexibility that is 
required for the above mentioned extensibility and modification of conceptual 
models. Beyond this, design systems are required to allow ad hoc structures of 
information that are not typologically defined. This implies that relationships 
between entities of information can be modelled that are not laid out in the 
conceptual model, but that appear only in instantiated models. 

3. Feature-based Modelling – concepts. 

The approach chosen in the research presented here, Feature-Based Modelling 
(FBM), is a technique of modelling product information that originates mainly 
from areas of Mechanical Engineering. The background and history of these 
techniques have been discussed and summarised in early papers by Cunningham 
(1988) and Shah (1991a), and more recently by Shah (1994) and Bronsvoort 
(1993; 1996). In the light of this research, FBM has been reviewed for its 
relevance to architectural design in Van Leeuwen et al. (1996; 1997). The main 
conclusions from the latter reviews are that, although there is a strong focus on 
Form Features in the original area of application of FBM (see figure 2) and 
recently also in architectural design research (Gero and Park, 1997), the 
concepts of this modelling approach are very relevant for modelling 
architectural design information in a broader sense. 
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Features in mechanical engineering describe characteristics of a product’s 
part, which are relevant in reasoning about the part and in the process of 
manufacturing the part. Typical classifications of Features include categories of, 
e.g., Form Features, Precision Features, Material Features, Assembly Features, 
and Constraint Features. Efforts on standardisation in Feature modelling, e.g. 
ISO 10303 Part 224, have not yet resulted in international standards, but it is 
generally accepted that extensibility of collections of Feature definitions is an 
essential requirement (Van Emmerik 1990; Shah 1991b). 

Two major approaches to generating Feature models are being followed. 
Feature recognition, historically the first approach, derives data from geometric 
models and builds up the Feature model from an analysis and interpretation of 
this data. This approach helps structuring an otherwise unstructured geometry 
into a data model that is useful for, e.g., manufacturing process plans. The 
modelling of the geometry itself is not addressed in this approach. 

Design-by-Features, however, does assist in generating geometric models, 
since the model is built up using Feature as primitives, rather than using 
geometric primitives. The main advantage of the latter approach is that high-
level information can be modelled from the beginning and does not need to 
result from analysis of semantically poor geometry. Combinations of the two 
approaches have been researched by De Martino et al. (1994). 

3.1. CONCEPTS OF FBM RELEVANT FOR ARCHITECTURAL DESIGN. 

In the context of this research, two major aspects of the Features technology are 
of interest for modelling architectural design information. The first concerns the 
formal definition of design information into Feature types, of which instances 
are created during the modelling of a particular design. The set of possible 
Feature types is not a limited set. Definitions of new Feature types can be 
created by designers when the need for a new type arises, for instance following 

ribs

pocket

compound Feature:
blind hole +
through hole

rectangular
pattern Feature

 
Figure 2  Examples of Form Features typically found in areas of mechanical engineering. 

(Van Leeuwen and Wagter, 1997). 
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the development of a new concept, production-technique, or material. 
Conceptual models, formed by collections of Feature types, can therefore be 
extended with new definitions. 

The second major aspect of interest concerns the way information is 
structured in the model. The Feature model that is built up during design forms 
a composition of Features and relationships between Features. The conceptual 
model provides a flexibility that allows the modelling of relationships that 
appear relevant only at times of designing. This flexibility is an inherent part of 
the definition of Features and results in an information structure that is not 
predefined. Both aspects are discussed in more detail in Van Leeuwen, Wagter, 
and Oxman (1996). 

3.2. ISSUES BEYOND THE ANALOGY WITH CURRENT FBM. 

The analogy between the domains of information modelling, mechanical 
engineering on one side and architecture on the other, does not hold when 
looking at the following issues. 

In mechanical engineering a strictly hierarchical sub-division is used for the 
modelling of a product. Feature modelling is applied at the level of modelling 
the lowest level, the parts. Relations between parts are now subject of research 
as well (Van Holland and Bronsvoort, 1996), but also here a strict hierarchy is 
maintained. Architectural design does not generally follow such a disciplined, 
hierarchic structure for defining the resulting product. Architectural design 
information involves multiple levels of abstraction, some information 
concerning detailed elements of the building, other information concerning the 
building as a whole. This division into levels of abstraction is not standardised, 
nor is it strictly dealt with. Relationships between entities of information often 
cross from one level to another and, as the design proceeds, information may be 
shifted from more abstract levels to more detailed ones. 

Our conclusion is that, if we want to benefit from the advantages of FBM 
also in earlier stages of architectural design, this requires that Features be 
applied at multiple levels of abstraction rather than just the most detailed level. 
A consequence is that the Features can be used to model abstract concepts as 
well as the more concrete concepts. The result of this approach is that the 
architectural design information model is built up entirely from Features which 
are used for the representation of any type of concept, any set of information 
that is regarded to be an entity in the design rationale. 

4. A Dynamic Framework for Architectural Features. 

On the basis of the original techniques of Feature-Based Modelling and with the 
considerations of additional requirements for architectural modelling purposes, 
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a framework has been defined for the development of information modelling 
systems for support of architectural design. This Feature modelling framework 
uses the following definition of the term Feature: 

A Feature is a collection of high-level information, possibly emerging 
during design, defining a set of characteristics or concepts with a 
semantic meaning to a particular view in the life-cycle of a building. 

This definition reflects four important aspects of Feature modelling in the 
architectural context. 

A. High-level information with semantic meaning. 
The semantic meaning of Features is directly derived from the domain for 
which Features are defined. 

B. Characteristics and concepts. 
Features do not necessarily represent physical parts of a building, but may be 
used for the formal definition of any kind of concept that is to be regarded a 
unit in the design and modelling process, tangible or non-tangible. Examples 
are spaces and space boundaries, functions, routings, but also relationships 
such as dependencies or constraints. 

C. Emerging during design. 
Definitions of Features are not always pre-defined. Features may come into 
existence during the process of design, when the need for a formal definition 
of a concept arises. 

D. Particular view in the life-cycle of a building. 
Features are view-dependent, meaning that their existence is defined from 
within a particular context. However, the usage of the concept ‘Feature’ is 
open to all life-cycle stages of the B&C industry. 

4.1. DEFINITION OF FEATURE TYPES. 

The framework is based on a three-layered schema of information definition. 
The lowest layer in figure 3 contains actual building information in the form of 
Feature models. Entities in these models are Features, instances of the Feature 
types defined in the middle layer. Feature types contain domain knowledge 
which is either generic knowledge, to be defined by standardisation 
organisations, or specific knowledge which can be defined by the user of the 
design system. The format for the Feature type definitions is determined by the 
upper layer, the Meta layer, which describes what classes of Feature types may 
be defined in the system. The knowledge incorporated in Feature types includes 
static knowledge in the form of variables and semantics of their values, as well 
as dynamic knowledge. Dynamic knowledge involves behaviour of entities in 
the model, for instance as a reaction to modifications in the model. Both static 
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and dynamic knowledge need to be included in the definition of Feature types, 
and are therefore formally described in the various classes of Feature types in 
the Meta layer. The basics for these classes are discussed in section 4.3 of this 
paper. 

Anticipating this, an example would be a Feature type, called UnitPrice, 
defined to represent information concerning costs. This type would be of the 
class Simple FeatureType, having a basetype ‘real’, and a unit ‘Escudo per 
unit’. Instances of this type store the unit-price of other entities (i.e. Features) in 
the model to which these instance are attached. 

4.2. FEATURE MODELLING ACTIVITIES. 

Figure 4 shows the activities of Feature modelling in relation to the parts of the 
infrastructure displayed in figure 3. The activity of defining a Feature type 
involves formalisation of domain knowledge. This formalisation is controlled 
by the Meta layer providing the possible classes of Feature types that may be 
defined in the system. 

The resulting new Feature type is then stored in a library of Feature types. 
Feature type libraries can be seen as the formal representation of domain 
knowledge, in which a classification, meaningful to the particular domain, is 
used. Classification of Feature types are discussed in more detail in Van 
Leeuwen, Wagter, and Oxman (1996). Specialisation of Feature types involves 

FEATURE-BASED MODEL
describing particular building or design

in Feature Instances

META LAYER
defining classes of Feature Types

GENERIC FEATURE TYPES

SPECIFIC FEATURE TYPES

defines format ofdefines format of

specialisation

instantiated into instantiated into

 
Figure 3  Infrastructure of Feature-based modelling with three layers of abstraction. 

(Van Leeuwen and Wagter, 1997). 
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the definition of a Feature sub-type based on a super-type selected from an 
existing library of Feature types. 

Using the formalised domain knowledge available in Feature type libraries, 
the knowledge concerning a particular design case can now be modelled by the 
creation of instance of Feature types. 

4.3. BASIC CLASSES OF FEATURE TYPES. 

Eight basic classes of Feature types are defined in the framework of FBM for 
architecture (see figure 5). These classes are used for types of information that 
have equivalents in most programming languages and for instance the data 
definition language EXPRESS (ISO 1994). 

A FeatureType is the abstract base-class for all FeatureType classes. It 
defines that all Feature types have a name and description and identify their 
author and date of definition. Feature types also may include so-called event-
handlers which specify the behaviour of this type of Features as a reaction to a 
particular event in the environment of the Feature. Event-handlers may for 
instance be used for requesting special user-input for the contents of a Feature 
on the event of Feature instantiation. Other events, such as deleting a Feature, 
may invoke reactions of related Features. 

Feature Type
definition

Feature Type
classification

Feature
Instantiation

Feature
Modification

Feature
Type

Domain
knowledge

Meta definition of
classes of Feature types

Feature Type
Library

Feature Type

Feature
Model

Particular
design case
knowledge

Feature
instance

classified
Feature Type

Feature Type

 
Figure 4  Activities of Feature modelling. Formalisation of domain knowledge into Feature types, 

which are classified into libraries of Feature types. Instantiation of Feature types into Feature 
instances comprising Feature models. 
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A Simple FeatureType is the basic type for simple data such as strings, integers, 
reals, and booleans. These types may define a default and a unit for their value. 

An Enumeration FeatureType allows the definer of the type to enumerate 
names, which can be used in modelling to select a particular semantic meaning. 
An example is a Enumeration FeatureType called ‘Wall-type’ which enumerates 
the following types of walls: [single wall, cavity wall, composed wall]. 

A Geometric FeatureType defines geometry in the same way as Form 
Features do in the mechanical engineering area of FBM. This is parametric 
geometry, in which the parameters can have relationships to other kinds of 
Feature types, such as a Simple FeatureType defining the height of a building 
element. 
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Figure 5  Basic classes of Feature types defined in the Meta layer of the FBM infrastructure. 

(Express-G notation) 
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A Complex FeatureType forms the basis for compositions of Feature types. 
The composition of a complex Feature type indicates which other types are 
included in this type, what role they have in this type, and what is their 
cardinality. Any Feature type can be part of this decomposition, although, for 
instance, avoiding circular definitions must be one of the tasks of a FBM 
system. 

A Feature SubType is a Complex FeatureType that inherits properties from 
another Feature type. In addition, a Feature SubType specifies properties that 
specialise this type from its super-type. 

A Constraint FeatureType is can be used to model constraints, which are a 
special kinds of relationships between Features that can be automatically 
maintained and evaluated by a so-called Constraint Solver. Related research is 
done by Kelleners (1997) (see also section 5 of this paper). 

Finally, a Handler FeatureType introduces event handling in the FBM 
system. Event handling allows designers to incorporate dynamic knowledge in a 
Feature model. A handler is a procedure, formally defined using a procedural 
language, that is evaluated on the occasion of a specified event. 

4.4. RELATIONSHIPS IN FEATURE MODELS. 

Of the basic classes of Feature types, as shown in figure 5, the complex Feature 
types and Feature sub-types are the types that form relationships with other 
types. A survey of relationships between information entities in architectural 
product models has resulted in the distinction of the following kinds of 
relationships. 

 discriminating relationship  
 containment relationship  
 structural dependencies  
 adjacency  
 tolerance  
 dimensional relationship  
 positional relationship  
 existential dependency  
 algorithmic relationship  

These relationships are categorised into four types, three of which are known 
from Object Oriented approaches. 

 Specialisation 
Specialisation indicates that a Feature type is a sub-type of another type. The 
sub-type inherits all characteristics of the super-type and distinguishes itself 
from the super-type by adding characteristics: the result is a specialised type. 
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Often this kind of relationship is denoted as an is_a relationship. 
Discriminating relationships are of this category. 

 Decomposition 
Decomposition indicates another kind of hierarchy, in which a Feature type 
is divided into parts, or components. There is no inheritance, the 
‘component-types’ just contain a part of the total of characteristics. 
Decompositions are often called has_a relationships. Containment 
relationships are of this category. 

 Association 
Associations are not hierarchic relationship, there is no inheritance, nor 
division of characteristics. This relationship indicates any association of two 
Feature types that does not fall in either categories of specialisation and 
decomposition. However, a particular type of association is distinguished 
separately and called specification. 

 Specification 
The above distinguished types of relationships appear in OO approaches to 
information analysis. A fourth type is distinguished in the FBM framework. 
A specification relationship is a kind of association of two Feature types 
indicating that one type specifies information about the other type. This is 
not to be confused with decomposition, since the specifying Feature type 
does not need to be a part of the specified Feature type. An example of a 
specification is a type called ‘Door’ for which the manufacturer-details are 
specified by a type called ‘Manufacturer’. Note that the specification 
relationship is directed from the ‘Door’ to the ‘Manufacturer’. 

Relationships in the FBM approach can be distinguished on two levels. On the 
typological level, relationships are defined within Feature types. A relationship 
may be optional, but in principle a relationship at typological level implies that 
all instances of the particular type will instantiate the relationship. In object 
oriented approaches, this level of relationship is normally defined using the first 
three categories shown above. In the FBM framework, Specialisations are 
defined using the class of Feature sub-types, while decomposition and 
association are defined in the composition of complex Feature types. 

If a relationship is desired between Feature instances that is not defined at 
the typological level, a problem arises because the relationship cannot be 
instantiated. The following example will be used to discuss the options for 
solving this problem: A designer wants to model the relationship between doors 
and a escape routes through the building. This implies that certain doors require 
adequate fire resistance. In the conceptual model used by this particular 
designer, it happens that fire resistance is not defined as part of the Feature type 
‘Door’. 
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Three different actions that can be taken to solve this problem are discussed 
below: 

1. modifying the type definition 
2. creating a new type or sub-type 
3. modelling the relationship for the particular instance only 

All three of these options need to be provided for by design information systems 
that are to fulfil the requirements of flexibility as described in section 2.2. 

Table 1  Three options for adding relationships to a Feature instance. 

The definition of the Feature type ‘Door’. Feature types 
are shown in white rounded boxes. Relationships are 
shown with the following symbols: 

inheritance 
decomposition 
association 
specification 

The first option is to change the definition 
at the typological level, adding the desired 
relationship to the Feature type. This 
solution is acceptable if all instances of the 
particular type require this relationship. 
Making the relationship optional increases 
the chances that this is a satisfactory 

situation, however, in many cases the desired relationship bears no relevance to other instances of 
the same type: for many doors fire resistance may not be significant. Adding to the definition of a 
Feature type, its size and complexity continues to increase and eventually it will loose its 
relevance, which is being the common denominator of its instances. 

A second option is to define a new 
Feature type, either as an amended copy 
of the original Feature type, or as a 
Feature sub-type that inherits the super-
type’s characteristics while adding the 
desired relationship: a ‘Fire Door’-type 
is defined. This approach avoids the 
problem of growing Feature types. 

However, the definition of a new Feature type for each divergent instance may result in an 
unmanageable number of Feature types (security doors, automatic doors, etc). Furthermore, an 
instance can only be derived from one type: these door-types are exclusive so that fire doors 
cannot be attached to the security system. Apart from this, it may not be the designer’s notion of 
the situation that ‘adding a relationship to a particular entity’ is seen as creating a new concept. 

Door

ColourHinge

colourhinges S[0:?]

Escape Route

Fire ResistanceDoor

ColourHinge

colourhinges S[0:?]

passes through

fire res.

Fire DoorDoor

ColourHinge Fire Resist.

Escape Route

colourhinges S[0:?]

passes through

fire res.
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The actual situation in the third option may 
well be described as a designer adding a 
non-typical relationship to a Feature instance 
(the fire resistance specifies only this door), 
without regarding this as a change in concept 
of the original Feature type. This situation 
should be modelled exactly in this manner, 
for the information model to represent most 

accurately the rationale of this design decision. 
What is required thus is a kind of relationship that can be modelled between Feature instances 

without the necessity of including the relationship in the definition of the Feature type. For this 
purpose we distinguish a type-relationship from an instance-relationship. Type-relationships are 
defined at typological level and have possible relevance to all instances of a type, whereas 
instance-relationships are added at instance level without being defined at typological level, thus 
without relevance to other instances of the same type. 

In the schema, Feature instances are shown in greyed, rounded boxes. Instantiated 
relationships defined at typological level are shown in normal font, while instance level 
relationships are shown in italics. 

 
Three of the four categories of relationships described earlier in this section, are 
relevant also for the kind of relationships that can be expected at instance level. 
The following matrix lists the seven types of relationships that are part of the 
FBM infrastructure: 

Table 2  Relationships in the FBM infrastructure. 

 type-relationship instance-relationship 
specialisation is_a - 
decomposition has_a inst_has_a 
association association inst_association 
specification specification inst_specification 
 
The three types of instance-relationships are semantically equivalent to their 
counterparts at the typological level.  

One of the most important implications of instance-relationships for 
information modelling systems concerns the way information is searched for 
and addressed in the information model. Instead of using knowledge from the 
structure of the conceptual model (the typological level), the system must now 
search for relationships at instance-level as well in order to find the requested 
information in a model. For instance, information concerning costs may be 
available in the model by means of relationships defined for the different types 
of elements in a building, but in addition, certain costs may be added, as a 
specification, to particular instances of building elements that bring additional 

Door: door12

Hinge: hinge12t

Hinge: hinge12b

hinges[1]

hinges[2]

Colour: Green

colour

Fire Resist.:
Res30

fire res.
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costs to the construction process: ‘all steel columns of the type HE230A cost 
$x.xx per meter, but the one labelled D23 costs an additional $z.zz because it is 
harder to position.’ 

5. Conclusions and current work. 

This paper demonstrates that extensibility and flexibility are essential 
requirements for information models that are to support architectural design and 
its dynamic character. The technologies of Feature-Based Modelling (FBM) in 
mechanical engineering address this extensibility and flexibility and are 
therefore very relevant for architectural design as well. The possibilities and 
benefits of applying these technologies in an architectural design support system 
may be a new stimulus in the discussion on product models in design, which 
seems to have stalled on the issue of rigidity of standardised core models. 

Two important differences between the fields of application, mechanical 
engineering versus architecture, oppose the drawn analogy: (a) Features in 
architecture will have to cover information concerning both concrete and 
abstract concepts in architectural design; and (b) Features are relevant to 
multiple levels of abstraction with crossing relationships between these levels. 
The notion of different levels of abstraction requires an integration of the 
modelling approach discussed here with results of design research. This work 
will be carried out in a joint research with Achten (1997; 1998) who 
investigated the generic representation of typological design knowledge. 

The paper discusses a framework for the application of architectural Features 
in the development of information modelling systems for support of 
architectural design. This framework distinguishes three levels of information 
definition: a meta layer defining classes of Feature types, a level of Generic 
Feature Types, to be standardised internationally, and Specific Feature Types for 
extension of the latter, and a level of actual Feature models containing instances 
of Feature types. Classification and standardisation of the level of Generic 
Feature Types has the potential of developing into a new sort of core models. 
The relation with the standardisation efforts in ISO 10303–STEP– and ISO 
13584–Parts Library– are evident, though outside the scope of this paper. The 
authors are eager to open the discussion on this subject and to collaborate with 
experts in this field. 

Currently, the approach of FBM for architecture is being developed further 
within the context of the newly defined research on the development of a design 
information system in virtual reality. This project, called VR-DIS1, aims to 
develop a design system that can be used for interactive design and evaluation, 

                                                      
1 VR-DIS is Virtual Reality – Design Information System / Distributed Interactive Simulations. 



 A FEATURES FRAMEWORK FOR ARCHITECTURAL INFORMATION 19 

Paper at AID ’98, Lisbon, 20-23 July 1998. 
Publication in: Artificial Intelligence in Design ’98, Eds. J.S. Gero and F. Sudweeks, 
Kluwer, Dordrecht, 1998. 

using a VR interface. The system will be based on a combination of the results 
from various, recent researches, including: design research on typological 
design knowledge (Achten, 1998); developments in multiple disciplines on 
design and evaluation, e.g. Mallory and Rutten (1997); development of Virtual 
Reality-based user interfaces (Coomans and Timmermans, 1997); research on 
the registration and evaluation of user-behaviour in a virtual building (Dijkstra 
and Timmermans, 1997); the techniques on constraint solving as developed in 
Kelleners (1997); and the Feature modelling approach as presented in this paper. 
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